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1 Introduction

The goal of the MPICH-2 ADI-3 is to provide routines to support MPI-1 and MPI-2 operations. The
target systems include clusters connected with either conventional networks or networks that support
remote memory access such as Infiniband, large symmetric multiprocessors (SMPs), and experimental
systems (particularly in support of research into MPI implementations).

1.1 Other Work

This section has not been written yet.
This section will briefly review other MPI implementation designs.
Other implementations of MPI include ones from IBM [?], Sun [6], MPI Software technology [?]

and Critical Software [?]. The IBM, Sun, and MPI Software technology versions offer support for
MPI_THREAD_MULTIPLE.

Several implementations have been developed that rely on remote memory operations, including
IBM LAPI [1], DEC (now HP) memory channel [4], Infiniband [?], and BIP [?].

Several implementations of the MPI one-sided operations have been described; see [?], [?].
The major cluster implementations are MPICH [5] and LAM/MPI [2, 7].
Another implementation is MPI/Pro from MPI Software Technologies; [?] describes the implemen-

tation of one version of this product.
An example of the use of both lock-free shared-memory operations and threads as MPI “processes”

is presented in [8].

1.2 MPI Overview

In order to better understand the design of the ADI, we first review MPI communication. MPI-1
defined both point-to-point and collective message-passing. In both of these, the sender and the
receiver actively participates in the communication in the sense that communication does not occur
until an MPI call is made to initiate it and the data is not guaranteed to be delivered until an MPI
call is made by the destination process. In fact, because the destination in memory of the data is
described by an MPI call made by the destination process, the data cannot be delivered to its final
(user-specified) destination until the matching MPI call is made by the destination process. This
feature has led many (but not all) MPI implementations to adopt a polling mode of communication
where communication for MPI happens only within MPI calls, not asynchronously.1 An alternative
approach uses either one more separate threads or an interrupt to cause communication to happen
outside of MPI calls made by the user2.

MPI-2 introduced additional operations including remote memory access (RMA), dynamic process
management, and parallel I/O. Remote memory access (also called one-sided communication) provides
a way to express put, get, and accumulate operations into memory in a remote process. In MPI, these
operations are all nonblocking; to ensure that these operations are locally complete, an additional MPI
routine must be called. MPI provides two “flavors” of RMA completion: active target and passive
target . In active target, the target process of an RMA operation (that is, the process that did not
initiate the RMA operation) must call an MPI routine before the RMA completes. The simplest
such routine is MPI_Win_fence; this is a collective call over all processes associated with the RMA
window and is similar to a barrier. The other is the more esoteric “scalable completion” routines,
which are called by a group of processes. In both of these cases, an MPI implementation may rely
on the target processes calling an MPI routine, and thus these may (but are not required to) use a
polling implementation. Unlike some other RMA APIs, MPI active target RMA operations may be
applied to any memory belonging to the process.

1The only exception to this is cancelling of MPI Send operations; a strictly conforming implementation of this
requires a guarantee that the remote process will respond without requiring an MPI call. Because of the extremely rare
use of this feature, most polling-mode implementations do not support this case.

2MPICH-1 supported both modes but most implementations chose the polling mode. All ADI-2 implementation
distributed with MPICH-1 used polling mode; however, some built by outside groups, such as the version for the Intel
TFLOPS system, did not use polling mode.
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The other form of RMA completion is handled by calls made only by the originating process. This
is called passive target RMA. Because the target process is not required to make any MPI calls, this
kind of RMA requires either very capable hardware that can handle all MPI RMA operations or the
use of a non-polling agent at the target process, or a combination of these. Because these operations
can be more difficult to implement efficiently, MPI allows an MPI implementation to require that
passive target RMA operations be allowed only on memory allocated by MPI_Alloc_mem.

MPI-2 dynamic process management allows an MPI application both to create new processes
and communicate with them and to connect two already running MPI programs together. The
number of processes in an MPI program can thus change over the lifetime of the program, though the
MPI routines to create or connect to processes are collective over a communicator, allowing an MPI
implementation to ensure that these operations are handled in a scalable fashion.

Section 3 describes some of the design choices that these operations suggest. These choices are
not the only ones possible, but we believe that they provide a consistent and efficient way to realize
the communication defined by MPI.

1.3 A Layered Approach

The ADI described here is full-featured. This allows an implementor to take advantage of the
opportunities for more efficient communication. However, to keep this flexibility from becoming a
burden, the design of the ADI is also layered : the more advanced features can be emulated by the
more basic features. The implementation of the ADI distributed with MPICH will include code to
provide these more advanced features in terms of the more basic operations, allowing an implementor
to quickly create a working implementation of the ADI and providing the opportunity to later enhance
the performance by selectively replacing some of these emulations. Section 4 describes this in more
detail.

The ADI described here resembles the communication routines of the MPI standard. The
differences are

1. The MPI objects such as requests and communicators are not opaque objects; instead, the ADI
uses pointers to structures with defined fields.

2. Checking for correct parameter values is not performed by the ADI routines; the implementation
of the MPI routines can make these tests before calling the ADI routines.

3. Completion of MPI operations (e.g., MPI_Wait) is handled by a combination of a completion
counter in requests and ADI calls to make progress, rather than through calls similar to the
MPI wait and test calls. There is no MPID_Wait or MPID_Test operation.

4. RMA (remote memory access) operations are complemented by a special interface for low-latency
operations, particularly in the passive target case.

5. Collective operations are built out of point to point operations (though provision is made to
replace each collective operation with an optimized function). An enhancement is planned that
allows the use of pipelined store and forward and scatter/gather (to collections of processes)
communication.

6. Dynamic process operations use a similar interface to MPI, but the process of building the new
intercommunicator is made more explicit through the use of virtual connections.

In addition, the ADI is not responsible for the construction and management of other MPI objects
such as datatypes, attributes, error handlers, and reduction operations. However, hooks are provided
to allow the MPI level to notify the ADI of changes in the other MPI objects.

Most implementors will choose to start with a simple interface based on only nonblocking readv and
writev-like operations. This replaces the “channel” interface defined in ADI-2. An implementation
of ADI-3 is provided with MPICH that is built on this simple interface; the channel interface and this
implementation are described in [?].
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Figure 1: Simplified block diagram of the communication paths on a connection between two processes.
The dashed lines separate the four communication types described below.

Another interface that is under development and that will be documented separately is the method
interface. This defines a set of operations that are needed to implement communication on a single
connection. This interface allows multiple communication methods to be used in a single MPI program,
such as TCP, VIA, and shared memory.

2 High-level Overview

The ADI is relatively rich in functionality. Before diving into some of the details, we provide a brief
overview of the ADI. Communication in the ADI takes place between processes. We call the object
that describes the communication between two processes a connection and show a simplified block
diagram of the objects used by the ADI in Figure 1. On each connection, we assume that the low-level
communication is nonblocking, thus there are queues of pending send operations and ordered lists of
receive operations. The lines show communication paths; note that data may be moved from user
memory to user memory without passing through the send or receive agents. This allows the ADI to
support so-called zero-copy3 methods.

Because the ADI implementation is connection oriented, all details of the data transfer are hidden
within the connection. This makes it relatively easy to support multiple communication methods
between different processes; for example, the message format used with TCP communication need
not look anything like the message format used by Infiniband communication within the same device.
Similarly, flow control is handled on a connection basis, allowing the use of whatever method is
appropriate for each communication method.

While the term “connection” is used, there is no requirement that an MPI program create
all possible connections or use a connection-oriented low-level protocol. These are really virtual
connections, with meaning only for the ADI and MPI layers.

It is important to bear in mind the difference between the operations that are sufficient to provide
the MPI semantics and the operations that may be necessary to provide a higher-performance match

3This is zero copy as that term is understood by network designers. This really mean zero extra copies, and does
not mean that the data is not copied from the source to the destination process.
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between facilities provided by the hardware and software. The ADI endeavors to provide an effective
compromise between a minimal set that can provide the full functionality and a richer (and larger)
set that can exploit the capabilities of a wide range of systems. To bridge the gap between these, the
MPICH ADI implementation provides some implementations of these higher-performance interfaces
in terms of a smaller set of operations. (In ADI-2 used in MPICH-1, this smaller set was called the
“channel interface”.) A more complete discussion of this is presented in Section 4.

3 Basic Design Rationale

In this section, the basic operations that MPI requires of an ADI are described, as well as the design
decisions that we have made based on these operations.

3.1 Communication Types

While all MPI interprocess communication (including MPI-1 and MPI-2) can be supported by a single,
suitably powerful mechanism such as active messages, the MPI communication semantics described
above suggest four separate types of communication operations. These are:

1. Two-party, point-to-point communication. This is the classic send-receive operation. This
typically involves coordination between the sender and the receiver, handling such items as flow
control, rendezvous messaging, and eager message delivery. Many low-latency implementations
of this kind of communication rely on polling to advance the communication (make progress in
MPI terms). Others may use a separate thread or an interrupt-driven mechanism (or a hybrid
of both polling and non-polling). Because MPI semantics support nonblocking communication
of arbitrary message sizes, any low-level support for communication in MPI must provide
nonblocking, point-to-point communication. This is most easily accomplished if the low-level
communications is also nonblocking.

2. Communication that has the property of local-completion. That is, a communication operation
that must complete independently of any explicit action by the target (destination) process.
This is required in MPI-1 for the implementation of MPI_Cancel (in the send case in most
implementations) and is useful for MPI_Abort. In MPI-2, local completion is also needed for
passive target remote memory access (RMA) operations. This kind of communication is typically
implemented through the use of active messages or remote service requests (without polling).

3. Communication for active-target RMA. In MPI, active target RMA operations include remote
put, get, and accumulate. These operations are completed by either an MPI_Win_fence call
made by all processes in the MPI window object or by the combination of MPI_Win_complete
and MPI_Win_wait at the origin (process that initiating a put, get, or accumulate) and target
(process containing the memory accessed by a put, get, or accumulate) processes. This form is
similar to the two-party, point-to-point communication because it can be implemented by using
a pure polling interface. This communication form is separated from the point-to-point mode
because the hardware in some systems allows some of the active-target RMA operations to be
implemented directly by hardware or low-level software.

4. Communication for passive-target RMA. These operations must complete locally. If these
operations must be implemented by communicating with an agent at the remote process, then
some form of non-polling agent is required, such as an interrupt-driven active message or a
separate communication thread. As in case three, this communication form is separated from
case 2 (local completion for MPI-1) because the hardware in some systems allows passive target
RMA operations to be implemented directly. We expect some systems to provide an extensive
set of operations (e.g., direct access to memory on an SMP through a shared memory segment),
others to provide more limited access (e.g., remote DMA through special network support),
and others to be implemented on top of a non-polling communication layer such as active
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(sketch of figure to be completed later)
1 can implement 3
2 can implement 4
1 can provide emulation of 2, but only approximately

Figure 2: Sample dependencies between communication approaches

messages. The ADI design is intended to provide a common set of entry points independent of
the capabilities of the underlying system.

The ADI design makes no explicit choice between polling and non-polling implementations.
Instead, it defines several kinds of polling points but allows a purely non-polling (interrupt-driven
or separate communication thread) implementation as well.

The four types of communication, of course, can be implemented by a single, suitably powerful
abstraction. However, achieving high performance (particularly low latency) requires abstractions that
are close to the operations that are efficiently implemented in hardware. The emergence of remote
access-style operations in networks [10, 9, ?] encourages their use as primitives (communication types
3 and 4). Efficient handling of message-passing, particularly the need to manage the flow of point-to-
point communications and scalable collective communications on top of more conventional two-sided
communications such as TCP suggests communication type 1. Finally, the need to handle some
MPI-1 operations that are infrequent and not performance sensitive, but must be handled reliably,
suggests communication type 2. The top level ADI interface provides direct access to these four
types of communication. Of course, the implementation of the ADI may implement some of these
communication types in terms of others, such as reducing all four types to type two (active messages).

3.2 Additional Goals

To ensure that short messages have the lowest possible latency, the common cases should have direct
paths to the low-level data transfer operations. In particular, the MPI and API layers should allow
operations to to complete without requiring the creation of intermediate data structures. For example,
sending a single word (particularly from a blocking MPI_Send operation) should not require creating
and initializing internal data structures. However, to maintain a simple code base, we will strive to use
common code. This suggests that a basic operation is a simple “attempt to send;” this allows the ADI
to attempt to send a short data message and return success without creating, for example, a queue
element that holds a pending communication operation. Only if the data cannot be communicated
immediately will the ADI create an intermediate data structure to hold the state of the incomplete
communication.

Thread safety is another goal of the MPICH2 implementation. There are really two separate situ-
ations. One is the use of multiple threads by the user’s code, for example, in a MPI_THREAD_MULTIPLE
mode. Another case is the use of a single thread by the user but multiple threads by the MPICH2 im-
plementation. In addition, because thread safety introduces extra overhead to ensure that shared data
structures are updated consistently, MPICH2 can be configured for both compile time and runtime
specification of the level of support for user threads.

3.3 Other Relevant MPI Issues

MPI defines a number of objects such as requests, windows, and communicators. In many cases,
these objects are natural choices for use within the ADI. Using these objects directly, rather than
defining different objects for use by the ADI and translating between the MPI and ADI versions,
avoids unnecessary overhead within the device. Let us look at several of these objects.
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3.3.1 Structures Involved in Communication

MPI Requests. The use of nonblocking operations to implement the low-level communication
requires an object to hold the current state of the communication and to record completion of the
operation. The natural place to store this within the MPI request. Pending send operations must
also be saved in a first-in-first-out queue (to maintain the message ordering guaranteed by MPI); this
suggests that the queue contain MPI requests. On the receive side, the message-matching defined by
MPI suggests saving the requests in an ordered list. Note the asymmetry between sends and receives.
On the send side, requests are placed in a strict FIFO queue for each communication path (to maintain
ordering of messages). On the receive side, requests for unmatched receives are kept in an ordered list,
and this list, because of the wildcard source receive (MPI_ANY_SOURCE) is (logically at least) shared by
all communication paths. Similarly, requests for unexpected messages (messages sent but for which
no matching receive has yet been issued) are kept in an ordered list. Requests are also the logical
place for the data structures relevant to packing and unpacking from complex datatypes to simpler
layouts such as contiguous data buffers. This is discussed in more detail under MPI datatypes.

MPI Datatypes. MPI communication can be specified using datatypes that describe complex
layouts in memory. An MPI implementation must convert these descriptions into data layouts that
can be conveniently moved by the low-level communication layers. Such layers typically support
only contiguous memory regions or Unix “io vectors” (struct iovec); MPI provides more general
forms of data layouts. However, while the MPI datatypes are sufficient to express most forms of
communication, there are no routines defined by the MPI standard to pack or unpack only a fraction
of a datatype. For example, there is no MPI-defined method to pack as much as fits into a fixed
sized buffer and return enough state so that a subsequent pack can pick up where the last left off.
Such an operation is needed for any algorithm that packetizes data or that pipelines data transfers.
Because this operation is needed both to handle packing noncontiguous data into temporary buffers
needed by low-level communication routines (such as TCP write or writev) and by high-performance
algorithms for collective communication, we have introduced a new data structure that is used to pack
and unpack buffers described by MPI datatypes. This new structure is called a segment and is stored
in a structure type named MPID_Segment. Segments are discussed in more detail in Section 3.6.

Thus, to handle the need to pack and unpack data, MPI requests also contain a segment. Combined
with the datatype and the user-buffer, this gives enough information to move the data to and from the
user buffer, even if an intermediate buffer is needed. Note that where possible, no intermediate buffer
is used. For contiguous data, and for more general data formats that the underlying communication
level supports, data can be moved without using any extra buffers. Segments are required to handle
the general case.

Consequences. These considerations suggest that the MPI request (more specifically, the internally-
defined structure to which an MPI request refers, which is MPID_Request) is the key object. The
MPID_Request is used to store the progress of communication and order communication between
processes. The ADI will use the request as its basic object.

The consequence of this is that the ADI point-to-point communication routines should usually
return a request. The only exception is that blocking communication routines should not return a
request if the communication is already complete. This allows the blocking communication routines
to return completion without ever creating and managing a request. This suggests that the ADI
interface for point-to-point communication look something like the following:

MPID_Send( buf, count, datatype, tag, <communicator info>, &request )

MPID_Isend( buf, count, datatype, tag, <communicator info>, &request )

MPID_Issend(...)

... similarly for other point-to-point functions

The exact form of the arguments that specify the communicator information will be discussed later.
This allows a “blocking” send to return a request if the operation has not completed, giving the calling
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routine more control over what steps to take to complete the request. It sets the request pointer to
NULL if it was able to complete without creating a request.

The blocking receive case is similar to the blocking send case. If, when the receive routine is called,
the data is available, no request should be created (the cost of creating a request isn’t the real issue,
it is the cost of initializing and managing the request).

Recall that in the receive case, there are two kinds of receives: posted (but unmatched by an
incoming send) and unexpected (sent but unmatched by a receive). For thread-safety, operations on
these two lists must be made atomically. These operations include

• check posted and return if found; else insert into unexpected queue

• check unexpected and return if found; else insert into posted queue

The MPID request is the appropriate list element to use in constructing these structures.
While the request is allocated by the ADI, MPID_Datatypes are allocated by the MPI implemen-

tation. In fact, most of the MPI objects, except for requests, will be allocated by the MPI implemen-
tation rather than within the ADI. This is an arbitrary choice; for greatest generality, the ADI could
be responsible for allocating all MPI objects. However, we believe that most users of MPICH and
ADI-3 will not need that flexibility, and managing the objects within the MPI layer instead of the
ADI layer simplifies the implementation of the ADI. However, to make provision for any ADI-specific
features that must be associated with an MPI object, the definition of the structure associated with
each object includes

MPID_DEV_xxxx_DECL

where xxxx may be COMM, DATATYPE, etc. This provides a simple way to extend the objects defined by
the MPI layer without forcing the ADI to provide a complete implementation. Whenever an object
is created or destroyed, the MPI layer can call a hook routine with a name of the form

MPID_Dev_xxxx_create_hook( pointer to object, ... )
MPID_Dev_xxxx_destroy_hook( pointer to object, ... )

The other parameters will be defined as it becomes clear what is needed. For example, in the case of
communicator creation, a pointer to the old communicator may be needed.

These routines are called after all other creation operations take place and before any of the destroy
operations take place.

These calls have not yet been implemented

3.3.2 Communication Contexts and Groups

MPI Communicators describe both a collection of processes (an MPI_Group) and a unique communica-
tion context. As described later, in MPICH and ADI-3, the communication context is encoded as an
integer. The target process of communication in MPI is described by a rank in a group associated with
a communicator. While this suggests that MPI groups are fundamental data structures, in MPICH-2,
groups are not used in the ADI at all. Instead, each communicator maintains an array of connections
that are indexed by the rank. Using these connections, the MPI implementation provides complete
support for the MPI group operations (e.g., MPI_Group_union). Explicit MPI Groups are not used
by the ADI.

3.4 Completing Point-to-Point Operations

To complete some particular MPI communication (described by a request, such as in a call to
MPI_Wait, it is necessary to have the ADI respond to any pending communication. Thus, it is
not necessary to provide the ADI with a collection of request to test or wait on. Instead, we merely
need to ask the ADI to try to make progress on communication and then check (using the completion
counter in each request) whether any particular MPI requests have completed. In the absence of
threads, a simple interface would look like
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MPI_Waitsome( ... )
{
while( no completed requests found )

for (i=0; i<count; i++) {
if (any requests done, return those as complete)

}
MPID_Make_progress( TRUE );

}

However, if there are multiple threads, particularly if there are separate threads that can complete
communication, then this code has a race condition, caused by the API for progress. Instead, a slightly
more complex interface is needed to eliminate any race conditions. For example,

MPI_Waitsome( ... )
{

while (1) {
MPID_Progress_start( ); // Notes that we are about to

// check ready flags. No completion
// counters will be set to complete

for (i=0; i<count; i++) {
if (any request done) { save info on request }

}
if (no requests done)

MPID_Progress_wait();
else {

MPID_Progress_end();
break;

}
}

}

The interface for test operations is similar, except that MPID_Progress_wait is replaced with
MPID_Progress_test, and no outer loop is needed.

In a polling implementation, the “start” and “end” calls are no-ops and the “wait” and “test” calls
are blocking and nonblocking polling calls respectively. In a nonpolling implementation, the “start”
and “end” calls may set and clear a thread lock or access lock, and the “wait” and “test” calls may
yield to a communication thread (in addition, the wait version could wait to be signaled through a
condition variable). This interface allows us to use the same code for completing MPI nonblocking
operations independent of the choice of polling, nonpolling, threaded, or nonthreaded implementations
of the ADI.

3.5 Supporting Collective Operations

When implementing collective communication algorithms, the ability to both store and forward data is
important for performance. For example, when complex MPI datatypes are used, it may be necessary
when receiving data to first receive into a temporary buffer and then unpack that data into the
user’s buffer. Forwarding this same data on (for example, within a broadcast) in a separate MPI
send operation then requires repacking the data from the user into a temporary buffer. To enable
an ADI implementation to avoid this cost, and to make it easier to efficiently write the collective
communication algorithms, the ADI will provide a variety of store and forward, scatter, and gather
operations. Note that these operations can be emulated using only point-to-point; as described above,
these can be built on top of simpler, point-to-point communication. These interfaces are still under
design.

Consequences. Determining completion in the store and forward or multisend cases may involve
more than one communication operation and possibly multiple communication methods. This argues
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that the status of a communication be tracked with a completion counter rather than a simple flag,
since multiple communication operations may be working with the same data buffer.

To best exploit the fact that the same data is both being received and sent, the ADI should be
able to provide pointers to “good” memory for these operations. For example, such memory may be
in a special, pinned page or within a sophisticated NIC.

The algorithms for efficient collective communication provide some information on the kinds of
multi-party operations that are required. The ADI does not support the most general of these
operations; the goal is to allow an MPI implementation to efficiently and correctly support the more
common collective communication operations such as MPI_Bcast, MPI_Scatter, and MPI_Allgather.

The very first version of ADI-3 does not include these more general multi-party communication
operations. It is the intent of ADI-3, however, to develop an efficient method for describing and
implementing the operations needed for the MPI collective operations. We may also consider special
support for collective argument checking, that is, checking that the parameters to a collective MPI
routine are consistent amoung all of the involved processes, perhaps using a special header format or
layered header format.

3.6 Data Segments

MPI datatypes are very general; a single instance of a datatype can describe an arbitrarily large
amount of data that is not necessarily contiguous in memory. Further, MPI datatypes can be very
concise; a vector datatype of a structure (that itself is not contiguous) describes a very complex
memory layout with just a few words of memory. Further, MPI dataytpes may be described using
only five different basic loop types [?, ?]. Because few if any low-level communication layers support
the full generality of MPI datatypes, it is sometimes necessary to pack and unpack data to intermediate
buffers. In addition, it may be necessary to pack or unpack a single MPI datatype with multiple calls;
this operation is not supported by the MPI_Pack and MPI_Unpack routines. For example, the code

MPI_Type_vector( 1000000, 1, 237, MPI_DOUBLE, &newtype );
MPI_Type_commit( &newtype );
MPI_Send( buf, 1, newtype, ... );

passes a single instance of an MPI datatype that describes 8 MB of data, even though it is completely
described by the base address and four integers, one of which is the size of a double. Further, because
this is a vector type, it cannot be represented efficiently with a struct iovec. If the underlying
communication layer can only send a maximum of 64K at a time (for example, using a shared memory
pool or a remote-memory communication area), it is necessary to incrementally pack this datatype,
64K at a time, into a temporary buffer. The segment routines provide this capability.

These routines are also needed for some implementations of the collective communication routines.
Many of the better (and in some cases, the best) algorithms for the collective operations in MPI can
be cast, at least for systems that are homogeneous is data representation, in terms of operations that
view the data to be communicated as a contiguous range of bytes and that send different parts to
different processes. To implement these algorithms for MPI requires handling MPI datatypes; even
in a single collective operation, some MPI processes may provide a simple, contiguous data buffer
while others specify a complex datatype. To implement these algorithms requires a method to extract
parts of a data buffer, viewed as a range of bytes. This is a simple variation on the routines that can
incrementally pack (and unpack) a data buffer described by an MPI datatype.

Question: We need to tie down the details of the segment creation and pack/unpack
operations.

Issues with the segment routines:

1. Who allocates storage for the segment? That is, where does the contiguous buffer come from?
In many cases, it would be nice if it was memory that was convenient for the ADI-3 device. In
the case of shared memory or RMA-networks, using special memory saves a memory copy.

2. Who sets the amount of data to pack or unpack in each call? The specific concern here is to not
stop in the middle of a natural data item, e.g., 3/8ths of the way through a double. The design
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here allows the routines to make slight adjustments in the amount of data packed or unpacked
in order to stay on “natural” boundaries.

3. How much do these routines need to know about MPI Datatypes? We’d like them to be generic
so that they could be shared with other projects such as PVFS and HDF5.

3.7 Remote Memory Access

The MPI remote memory access model was deliberately designed to have very loose (but precise)
synchronization requirements and to make minimal demands on the underlying hardware. For
example, it is possible within the MPI model to support non-cache-coherent systems (such as the
NEC vector supercomputers)4. However, the model also allows an MPI implementation to exploit
special hardware capabilities.

The MPI specification is very careful in describing when a process’s memory window is accessible
to other processes (the exposure epoch) and when a process may be performing RMA operations
(the access epoch). Understanding these is necessary in developing a correct MPI implementation.
However, these concepts are deliberately made as general as possible to allow the greatest flexibility
to an MPI implementation. In the discussion below, we will usually not refer to the access or exposure
epochs. However, if there are questions as to what the terms “synchronization” or “completion” mean
in the RMA context, consult the discussion of the RMA epochs in the MPI standard.

The MPI specification has a number of “as if” rules, such as “as if only one process accesses a
memory window at a time”. Naturally, if an implementation can perform an operation more efficiently
without violating such “as if” rules, the implementation is free to do so. An example of this is passive
target updates to disjoint regions in a memory window; the “as if” rule says that these must appear
“as if executed sequentially,” but an implementation can allow concurrent updates if they are known
a priori to be disjoint. This suggests that operations be aggregated so that the range of affected bytes
within the target window is known. Fortunately, the MPI specification allows such aggregation.

3.7.1 RMA Aggregation

One of the most misunderstood parts of the MPI RMA specification is the issue of when operations take
place, particularly with the poorly named MPI_Win_lock and MPI_Win_unlock routines. MPI RMA
allows the implementation considerable latitude in the timing of operations. An important case in
point is aggregation (combining) of RMA operations. The approach of aggregating RMA operations
has been developed in the BSP approach, and the MPI specification was designed to support this
technique. For example, the following sequence of MPI calls

MPI_Win_lock( MPI_LOCK_SHARED, rank, 0, win );

MPI_Accumulate( &one, 1, MPI_INT, rank, 0, 1, MPI_INT, MPI_SUM, win );

MPI_Win_unlock( rank, win );

can be converted into a single, atomic update operation on some systems (particularly on those
that have no direct access to remote shared memory, such as a system that only supports TCP
communication).

To allow low-latency implementation of single-element remote updates (e.g., put or accumulate),
the ADI design allows the MPI implementation to perform aggregation of RMA operations without
calling the ADI. This eliminates a layer of function calls in these simple cases5. The ADI provides a
set of definitions that are used to decide the aggregation threshold, in terms of number of bytes and
operations. The device can also specify that no aggregation is done at the MPI level, giving the ADI
greater control at the cost of additional function calls. How does the device specify this?

4The ADI-3 design, however, does assume cache coherence with local memory; that is, the memory system on each
node is cache coherent.

5In addition, the MPI functions could be inlined by a suitably sophisticated compiler, removing all function calls.
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3.7.2 Nonblocking RMA and Remote Completion

The MPI RMA operations are nonblocking. Thus, there must be some way to indicate both local and
remote completion. MPI provides users with three different mechanisms for marking completion in
their code:

Fence. This is essentially a barrier synchronization, similar to the Cray SHMEM routine shmembarrier.
To allow the ADI to exploit hardware and software features similar to those used by Cray
shmembarrier in the Cray T3D and T3E, the ADI provides a similar routine (MPID_Win_fence),
with the difference that it applies to MPI window objects on arbitrary groups of processes. An
ADI implementation for a system that provides an efficient fence operation only on all processes
can, of course, test for that case and execute different code when not all processes are involved
in the MPI window object.

Passive. This is a kind of two-party synchronization since only the origin and target processes are
involved, rather than all members of the group of the MPI window object. The ADI provides a
simple completion counter variable that is zero on completion; this allows the flag to be a counter
that contains the number of uncompleted operations or a simple boolean that indicates whether
the operation is complete. The MPI calls that express this kind of synchronization are the
misnamed MPI_Win_lock and MPI_Win_unlock. Note that calls by a process to MPI_Win_lock
for its own rank (i.e., “lock my window”) are different in behavior from calls to a remote process
because the local process may use non-MPI operations to access the memory window (e.g.,
through simple references or assignments). ADI-3 assumes a cache-coherent memory system,
which allows some important simplifications in handling these operations.

Scalable Multiparty. In this mode, not all processes in the window are involved (unlike the fence
case), but both origin and target processes make calls to indicate when operations must complete.
The MPI calls used to express this kind of synchronization are MPI_Win_post, MPI_Win_start,
MPI_Win_complete, and MPI_Win_wait. This form can also be handled with counters that are
updated by each partner process. Efficient handling of this approach remains a research issue,
however.

3.8 Contexts for Collective, File, and Window Operations

MPI requires that different kinds of communication be non-interfering. That is, communication for
collective operations such as MPI_Bcast and point-to-point operations such as MPI_Send, even on the
same communicator, must not interfere with each other. With MPI-2, this is extended to operations on
MPI File and Window objects, both of which may involve some communication by the implementation.

MPI also requires that communication within different communicators be noninterfering. Many
implementations achieve this by using a hidden (to the MPI user) context id , which is simply an
integer that is communicated along with the tag, source, etc. One approach that can be used to
ensure that communication of different types be non-interfering is to use different communicators; in
MPICH-1, each communicator was created with a second, hidden (from the user) communicator that
was used for communication implementing collective operations.

However, this approach has a number of drawbacks, particularly in organizing the code. In
addition, with files and windows as well, three hidden communicators (in addition to the one used for
point-to-point communication) might be needed6. Finally, the implementation of intercommunicator
collective operations, also introduced in MPI-2, adds additional complexity. In MPICH-2, we take a
different route. Instead of creating hidden communicators, we allocate context ids in groups of four.
The API routines for communication take an explicit context id offset as a parameter. These offsets
have the following values. For intracommunicators:

0 –point to point communication,
6An alternative is to perform a shallow duplicate (without invoking attribute copy functions) of the communicators

passed into the file and window creation routines.
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1 –collective communication,

2 –communication for files,

3 –communication for window objects.

For intercommunicators:

0 –point to point,

1 –collective in group A,

2 –collective in group B,

3 –collective over both groups.

(Note that a single context value for “collective in local group” is adequate; however, having separate
context values provides stronger separation and aids in debugging.)

3.8.1 Context Id Generation

Because libraries are encouraged to use it, the operation MPI_Comm_dup should be efficient. In
particular, where possible, it should be a local operation (involving no communication). This is
possible, at least for the first few dup’s of a communicator, if each communicator caches some extra
context ids when it is created. The MPI implementation will maintain a cache of context values in
a communicator; communicators created by dup’ing that communicator will take a value from the
cache. If the cache is empty, the MPI level will make a collective call to the ADI-3 routine that returns
context ids. To simplify this, the ADI-3 routine returns a single value; the MPI level will multiply
this by a fixed constant size to create a sequence of consecutive context ids. In addition, the MPI
level will keep track of returned context ids (made available by freeing a communicator) so that the
ADI can be told when a context id is available again.

In the current implementation, context id generation is provided by a utility routine above the level
of the ADI. Because there are opportunties for implementations on hardware that provides remote
memory operations, such as accumulate, future versions of the ADI may allow the ADI implementation
to replace the default context id generation.

3.9 Dynamic Processes

There are two major goals here for the ADI: scale to large but not necessarily enormous numbers
of processes and maintain modularity so that it is relatively easy to maintain and extend the
implementation. A secondary goal is to structure the code so that initialization and rundown are
efficient and do not spend a great deal of time setting up facilities that a program never uses.

MPI-2 adds dynamic process management. A consequence of this is that there are no absolute and
global process ids. This observation suggests that all communication be considered locally in terms
of (possibly virtual) connections to processes. Unlike ADI-2, there are no data structures that map a
rank in a communicator into a “global rank” (i.e., rank in MPI_COMM_WORLD). Instead, communicators
have arrays of virtual connections that are indexed by the rank.

There is a kind of local process id that is used by the MPI group operations. However, it is not
critical item and, since the MPI group operations are implemented above the ADI, we do not discuss
them here. The one exception is the routine to provide a mapping from any rank in a communicator to
a value that uniquely specifies an MPI process relative only to the calling process. That is, we do not
need a value that is globally correct, only one such that if two ranks in two different communicators
on the same process refer to the same MPI process, then this mapping will give the same value on
that process. Such values are called “local process ids”.
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4 ADI Layers

It is expected that many implementations of the ADI will be layered, building the four types of
communication described in Section 3.1 in terms of simpler communication methods. This section
outlines several possible implementations.

4.1 Socket (TCP) communication

Socket-based communication provides a two-party communication similar to the type 1 communication
in Section 3.1. A simple implementation can map all four kinds of communication into simple read
and write calls as follows (with some caveats):

1. Point to point communication is a close match. Some care is needed to handle flow control.

2. Local completion communication is more difficult. A simple (and not entirely correct) approach
is to simply convert these operations (e.g., MPID_Cancel_send) into a message that is sent on
the same socket as the type 1 point to point communication. All that this requires is that
messages sent on the socket connecting two processes include a header that describes the type of
message (e.g., MPI message envelope, MPI cancel message, MPI cancel acknowledgement, etc.).
For those familar with the channel device in ADI-2, these are just the packet types.

3. Active target RMA. This can also be converted into simple messages sent on the same socket.
Note that there are some complications in handling complex MPI datatypes.

4. Passive target RMA. Just like active target RMA. Note, however, that for correct behavior, the
receive agent must be called at least occasionally, even if the target process makes no MPI calls.

The progress engine is implemented by using select or poll, and is a pure polling approach.
To correctly handle the local completion (type 2) and passive target (type 4) communication when

using sockets, there must be an asynchronous communication agent. One easy way to do this is to take
the progress engine and place it in a separate thread. The operating system then guarantees that the
progress engine is called often enough to ensure that the locally completing communication operations
make the necessary progress. However, to illustrate the advantages of the ADI design (in terms of
four separate communication types), consider a different version where there are two sockets between
communicating pairs of processes. The first socket is used in a polling mode for point-to-point and
active target communication (types 1 and 3). This provides the low-latency associated with polling
models. The second socket is used for the locally-completing communication (types 2 and 4), and uses
a separate thread, process, or SIGIO to ensure local completion. This approach provides correctness
with the MPI progress model without sacrificing the low latency of the polling approach for the more
common operations. Note that such an implementation must still guard some data structure updates
where different communication threads might update the same data structure.

Of course, other approaches are possible, including one that uses a mix of polling and nonpolling
even on type 1 and type 3 communication.

4.2 Remote Put

Not yet written

4.3 Shared Memory

Not yet written

5 Summary

This section provides a short summary of the ADI routines. Complete details are provided in the
ADI-3 reference manual.
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5.1 Point to point communication

Each simple MPI communication operation has its counterpart here:

MPID_Send
MPID_Ssend
MPID_Rsend
MPID_Isend
MPID_Issend
MPID_Irsend
MPID_Recv
MPID_Irecv
MPID_Request_free
MPID_Iprobe
MPID_Probe

Note that these do not include the buffered send nor the two send-receive operations (MPI_Sendrecv
and MPI_Sendrecv_replace). Send-receive operations are described in terms of separate send and
receive operations; buffered send may use the optional MPID_tBsend or may simply use MPID_Isend
with the sample implementation described in the MPI-1 standard.

Several MPI routines are represented by slightly different routines. These include

MPID_tBsend - Used to optimize buffered sends (MPI_Bsend etc.)
MPID_Cancel_send - Separate routines for cancelling sends and receives
MPID_Cancel_recv

In addition, the persistent communication routines have MPID equivalents:

MPID_Send_init
MPID_Ssend_init
MPID_Rsend_init
MPID_Recv_init
MPID_Startall

These are provided so that the device can effectively manage the persistent request, which may require
allocating a device-specific request either when an init routine (e.g., MPID_Send_init) is called or when
the request is started with MPID_Startall.

Note that there is no direct access to the message queues by the MPI layer. We recommend that
the device implement the message queue interface defined for external tools and used by Totalview.
This interface is described in [3] and the files mpich2/src/mpi/debugger/ in MPICH2.

5.2 Completion of Point to point communication

Completion of nonblocking (or incomplete in the case of a request returned by MPID_Send, MPID_Ssend,
MPID_Rsend, or MPID_Recv) operations is handled by calling the progress engine routines and checking
the completion counter value in a request. The progress engine routines are

MPID_Progress_start
MPID_Progress_end
MPID_Progress_test
MPID_Progress_wait

This set of routines is required in order to provide an interface to the request’s completion counter
value that is thread-safe. In addition, there is a routine that indicates polling points; places in the MPI
code where a polling implementation should check for incoming messages. This routine is nonblocking
and is

MPID_Progress_poke
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5.3 Starting and Stopping

The routines to start and stop the ADI match the MPI counterparts. Note however that there are no
calls to implement “is initialized”; this is managed entirely at the MPI level.

MPID_Init
MPID_Finalize

5.4 RMA

The RMA routines haven’t been set yet. However, they will include MPID versions of put, get, and
accumulate, along with a few calls to handle the aggregated operations (e.g., lock/accumulate/unlock).
In addition, we expect to separate the MPI_Win_lock and MPI_Win_unlock into two kinds of opera-
tions: non-local, where the operation is really a start/end RMA operation, and local, where it really
is lock/unlock.

One question is whether there should be support at the MPI layer for caching data type descriptions
(e.g., for complex MPI datatypes to be applied at the target process) and the corresponding ADI
routines, or whether this should be handled entirely by the ADI.

The ADI routines that support RMA include

MPID_Win_put
MPID_Win_get
MPID_Win_accumulate
MPID_Win_do
MPID_Win_fence
MPID_Win_start
MPID_Win_end
MPID_Win_local_lock
MPID_Win_local_unlock

MPID_Win_do is used to send aggregated operations to the ADI. This provides a pointer to a
description and an indication of whether this starts, ends, or continues a sequence of RMA operations.
MPID_Win_start and MPID_Win_end are used for nonlocal uses of MPI_Win_lock and MPI_Win_unlock.

We may want MPID_Win_do_put, MPID_Win_do_get, and MPID_Win_do_accumulate instead of a
single MPID_Win_do.

5.5 Dynamic Processes

The MPID routines are similar to the MPI routines. Undecided: does the MPI layer or the ADI layer
setup the communicator? The ADI layer needs only provide the pointers to the connection structure;
the MPI layer could build the communicators and access the context id values.

5.6 Device Hooks

To allow the device to track the creation and destruction of MPI objects (other than requests), the
device may define hook routines. These have the form

MPID_Dev_xxx_create_hook
MPID_Dev_xxx_destroy_hook

where xxx is the object type, such as comm, datatype, group, etc. Many devices will define these as
C preprocessor macros that expand to nothing, thus eliminating any function calls.

6 Integrating a New Device into the MPICH Build Tree

This section describes how to add a device or method into the MPICH build tree. This section
is intended both to describe the process of adding a device and the rationale for the design of the
device-dependent modules.
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6.1 Steps Needed in Implementing a Device

Here are the steps that must be taken to implement a new device. Similar steps are required when
adding to a device, such as creating a new channel-based device.

1. A new device is created by adding a new directory src/mpid/<newdevice>. Into this directory
should go all of the files (and subdirectories) needed for the device. These include

setup_device: This script, if present, is run before any configure in the device directory. It can
setup any files or communicate any data that is needed by the device.

configure: This should be a standard autoconf script (at least, it must accept the standard
configure arguments. All device-specific tests, such as those for header files or libraries,
should be made by the configure in the device directory. No changes of any kind should
be made to the top-level configure (the one in the mpich2 directory).

localdefs: This file, if present, is sourced by the top-level configure after the device’s
configure is run. It should be used to communicate any variable values to the top-level
configure. A common use it to add any libraries that may be required. For example, a file
localdefs.in may be used that contains

LIBS="$LIBS @EXTRA_LIBS@"

The configure in the device directory includes localdefs in the AC_OUTPUT list, allowing
the device’s configure step to create the localdefs file.

2. Include files. Any include files that are needed by mpiimpl.h should be make available by
including the directory path in the CPPFLAGS variable, set in the setup_device file mentioned
above. Make sure that you append to this variable, as in

CPPFLAGS="$CPPFLAGS -I$use_top_srcdir/src/mpid/mydevice"

Note the use of the variable use_top_srcdir; the top-level configure sets this to the absolute
path to the top-level source directory.

Provide the files mpidpre.h and mpidpost.h. The implementation of all MPI routines include
files in this order:

mpi.h The standard mpi.h that all MPI users include

mpidpre.h Any definitions needed before the provided definitions of the contents of the internal
structures. This can included definitions that override parts of mpiimpl.h

contents of mpiimpl.h The bulk of the internal definitions. This also includes information
on the timers.

mpidpost.h Any definitions needed by the device after the rest of the definitions in mpiimpl.h.
In many cases, this file may be empty.

3. Testing codes for device-specific functions. Place these in a test subdirectory of the device.
These tests should be performed through a test target in the device’s Makefile.sm.

4. mpiexec. Decide whether you need a special mpiexec program. Many devices will be able to
use any of the mpiexec programs in the various src/pm directories, such as src/pm/mpd and
src/pm/forker. (“pm” is for process manager, and MPICH2 expects to install some process
manager for all devices.) If you need a new mpiexec, it should be added to a new subdirectory
within src/pm. There must be an installation target in the Makefile.sm for any new mpiexec.
For example, if the mpiexec program requires the multi-purpose demon (mpd), ensure that the
mpd is installed. For example, in the src/pm/<my-process-manager>/Makefile.sm, use the
line

install_BIN = mpd
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to install the program mpd into the bin directory. The particular process manager to use is
selected at configure time using the --with-pm option. Most devices should be able to use one
of the process managers provided with MPICH2.

5. Device-specific documentation, such as environment variables and command-line arguments used
only by a particular device. Place this information into the file src/mpid/<yourdevice>devdoc.txt.
The mpich documentation generators will look for this file.

All of these are included by the file mpiimpl.h.

6.2 Directory Structure

A device should be placed in a subdirectory of mpich/src/mpid/; for example, mpich/src/mpid/mm
is the multi-method ADI delivered with mpich. The directory name is the same as the device name
specified to the mpich configure with the --with-device option.

6.3 Device Configuration and Setup

Each device must have a configure script. This will be run by the mpich configure as part of the
top-level configuration. Any other commands that a device needs for setup should be run using the
AC_OUTPUT_COMMANDS autoconf macro. Autoconf version 2.13 or later, but before 2.50, should be
used; we recommend using the macros defined in mpich/confdb/aclocal.m4, as they include fixes to
autoconf7. Do not modify the mpich configure to support a device.

There must be a echomaxprocname target in the Makefile in the device’s directory. This should
look something like

echomaxprocname:
@echo 128

This value will be used as the value for MPI_MAX_PROCESSOR_NAME, and must be an integer value.
(The above will be replaced by an option to provide this value through the localdefs files.)

A Data Structures

This section contains descriptions of the data structures using in the ADI3 definition. These include
both the major enumerated types and the structure definitions.

A.1 Basic enumerations and types

MPID_Object_kind — Object kind (communicator, window, or file)

Synopsis

typedef enum MPID_Object_kind {
MPID_COMM = 0x1,
MPID_GROUP = 0x2,
MPID_DATATYPE = 0x3,
MPID_FILE = 0x4,
MPID_ERRHANDLER = 0x5,
MPID_OP = 0x6,
MPID_INFO = 0x7,
MPID_WIN = 0x8,
7There are serious bugs in the AC_CHECK_HEADER macro that are still present in autoconf 2.52, and version 2.57 is

not backward compatible with earlier versions of autoconf, including 2.52.
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MPID_KEYVAL = 0x9,
MPID_ATTR = 0xa,
MPID_REQUEST = 0xb
} MPID_Object_kind;

Notes

This enum is used by keyvals and errhandlers to indicate the type of object for which MPI opaque
types the data is valid. These are defined as bits to allow future expansion to the case where an
object is value for multiple types (for example, we may want a universal error handler for errors
return). This is also used to indicate the type of MPI object a MPI handle represents. It is an enum
because only this applies only the the MPI objects.

Module

Attribute-DS

MPID_Lang_t — Known language bindings for MPI

Synopsis

typedef enum MPID_Lang_t { MPID_LANG_C
#ifdef HAVE_FORTRAN_BINDING

, MPID_LANG_FORTRAN
, MPID_LANG_FORTRAN90

#endif
#ifdef HAVE_CXX_BINDING

, MPID_LANG_CXX
#endif
} MPID_Lang_t;

A few operations in MPI need to know what language they were called from or created by. This
type enumerates the possible languages so that the MPI implementation can choose the correct
behavior. An example of this are the keyval attribute copy and delete functions.

Module

Attribute-DS

MPID_Request_kind — Kinds of MPI Requests

Synopsis

typedef enum MPID_Request_kind_t {
MPID_REQUEST_SEND, MPID_REQUEST_RECV, MPID_PREQUEST_SEND,
MPID_PREQUEST_RECV, MPID_UREQUEST } MPID_Request_kind_t;
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Module

Request-DS

MPID_Comm_kind_t — Name the two types of communicators

Synopsis

typedef enum MPID_Comm_kind_t {
MPID_INTRACOMM = 0,
MPID_INTERCOMM = 1 } MPID_Comm_kind_t;

MPID_Errhandler_fn — MPID Structure to hold an error handler function

Synopsis

typedef union MPID_Errhandler_fn {
void (*C_Comm_Handler_function) ( MPI_Comm *, int *, ... );
void (*F77_Handler_function) ( MPI_Fint *, MPI_Fint *, ... );
void (*C_Win_Handler_function) ( MPI_Win *, int *, ... );
void (*C_File_Handler_function) ( MPI_File *, int *, ... );

} MPID_Errhandler_fn;

Notes

The MPI-1 Standard declared only the C version of this, implicitly assuming that int and MPI_Fint
were the same.

Module

ErrHand-DS

Questions

What do we want to do about C++? Do we want a hook for a routine that can be called to throw
an exception in C++, particularly if we give C++ access to this structure? Does the C++ handler
need to be different (not part of the union)?
What is the interface for the Fortran version of the error handler?

MPID_Op_kind — Enumerates types of MPI_Op types
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Synopsis

typedef enum MPID_Op_kind { MPID_OP_MAX=1, MPID_OP_MIN=2,
MPID_OP_SUM=3, MPID_OP_PROD=4,

MPID_OP_LAND=5, MPID_OP_BAND=6, MPID_OP_LOR=7, MPID_OP_BOR=8,
MPID_OP_LXOR=9, MPID_OP_BXOR=10, MPID_OP_MAXLOC=11,
MPID_OP_MINLOC=12, MPID_OP_REPLACE=13,
MPID_OP_USER_NONCOMMUTE=32, MPID_OP_USER=33 }

MPID_Op_kind;

Notes

These are needed for implementing MPI_Accumulate, since only predefined operations are allowed
for that operation.
A gap in the enum values was made allow additional predefined operations to be inserted. This
might include future additions to MPI or experimental extensions (such as a Read-Modify-Write
operation).

Module

Collective-DS

MPID_User_function — Definition of a user function for MPI_Op types.

Synopsis

typedef union MPID_User_function {
void (*c_function) ( const void *, void *,

const int *, const MPI_Datatype * );
void (*f77_function) ( const void *, void *,

const MPI_Fint *, const MPI_Fint * );
} MPID_User_function;

Notes

This includes a const to make clear which is the in argument and which the inout argument, and
to indicate that the count and datatype arguments are unchanged (they are addresses in an
attempt to allow interoperation with Fortran). It includes restrict to emphasize that no
overlapping operations are allowed.
We need to include a Fortran version, since those arguments will have type MPI_Fint * instead. We
also need to add a test to the test suite for this case; in fact, we need tests for each of the handle
types to ensure that the transfered handle works correctly.
This is part of the collective module because user-defined operations are valid only for the collective
computation routines and not for RMA accumulate.
Yes, the restrict is in the correct location. C compilers that support restrict should be able to
generate code that is as good as a Fortran compiler would for these functions.
We should note on the manual pages for user-defined operations that restrict should be used when
available, and that a cast may be required when passing such a function to MPI_Op_create.



A DATA STRUCTURES 21

Question

Should each of these function types have an associated typedef?
Should there be a C++ function here?

Module

Collective-DS

MPID_Copy_function — MPID Structure to hold an attribute copy function

Synopsis

typedef union MPID_Copy_function {
int (*C_CopyFunction)( int, int, void *, void *, void *, int * );
void (*F77_CopyFunction) ( MPI_Fint *, MPI_Fint *, MPI_Fint *, MPI_Fint *,

MPI_Fint *, MPI_Fint *, MPI_Fint * );
void (*F90_CopyFunction) ( MPI_Fint *, MPI_Fint *, MPI_Aint *, MPI_Aint *,

MPI_Aint *, MPI_Fint *, MPI_Fint * );
/* The C++ function is the same as the C function */

} MPID_Copy_function;

Notes

The appropriate element of this union is selected by using the language field of the keyval.
Because MPI_Comm, MPI_Win, and MPI_Datatype are all ints in MPICH2, we use a single C copy
function rather than have separate ones for the Communicator, Window, and Datatype attributes.
There are no corresponding typedefs for the Fortran functions. The F77 function corresponds to the
Fortran 77 binding used in MPI-1 and the F90 function corresponds to the Fortran 90 binding used
in MPI-2.

Module

Attribute-DS

MPID_Delete_function — MPID Structure to hold an attribute delete function

Synopsis

typedef union MPID_Delete_function {
int (*C_DeleteFunction) ( int, int, void *, void * );
void (*F77_DeleteFunction)( MPI_Fint *, MPI_Fint *, MPI_Fint *, MPI_Fint *,

MPI_Fint * );
void (*F90_DeleteFunction)( MPI_Fint *, MPI_Fint *, MPI_Aint *, MPI_Aint *,

MPI_Fint * );
} MPID_Delete_function;
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Notes

The appropriate element of this union is selected by using the language field of the keyval.
Because MPI_Comm, MPI_Win, and MPI_Datatype are all ints in MPICH2, we use a single C delete
function rather than have separate ones for the Communicator, Window, and Datatype attributes.
There are no corresponding typedefs for the Fortran functions. The F77 function corresponds to the
Fortran 77 binding used in MPI-1 and the F90 function corresponds to the Fortran 90 binding used
in MPI-2.

Module

Attribute-DS

A.2 Major MPI Objects

MPID_Request — Description of the Request data structure

Synopsis

typedef struct MPID_Request {
int handle;
volatile int ref_count;

#ifndef MPICH_SINGLE_THREADED
MPID_Thread_lock_t mutex;

#endif
#ifndef MPICH_SINGLE_THREADED

/* initialized flag/lock used to by recv queue and recv code for
thread safety */

MPID_Thread_lock_t initialized;
#endif

MPID_Request_kind_t kind;
/* completion counter */
volatile int cc;
/* pointer to the completion counter */
/* This is necessary for the case when an operation is described by a

list of requests */
int volatile *cc_ptr;
/* A comm is needed to find the proper error handler */
MPID_Comm *comm;
/* Status is needed for wait/test/recv */
MPI_Status status;
/* Persistent requests have their own "real" requests. Receive requests

have partnering send requests when src=dest. etc. */
struct MPID_Request *partner_request;
/* User-defined request support */
MPI_Grequest_cancel_function *cancel_fn;
MPI_Grequest_free_function *free_fn;
MPI_Grequest_query_function *query_fn;
void *grequest_extra_state;

/* Other, device-specific information */
#ifdef MPID_DEV_REQUEST_DECL
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MPID_DEV_REQUEST_DECL
#endif
} MPID_Request;

Module

Request-DS

Notes

If it is necessary to remember the MPI datatype, this information is saved within the device-specific
fields provided by MPID_DEV_REQUEST_DECL.
Requests come in many flavors, as stored in the kind field. It is expected that each kind of request
will have its own structure type (e.g., MPID_Request_send_t) that extends the MPID_Request.

MPID_Comm — Description of the Communicator data structure

Synopsis

typedef struct MPID_Comm {
int handle; /* value of MPI_Comm for this structure */
volatile int ref_count;

#if !defined(MPICH_SINGLE_THREADED)
MPID_Thread_lock_t mutex;

#endif
int16_t context_id; /* Assigned context id */
int remote_size; /* Value of MPI_Comm_(remote)_size */
int rank; /* Value of MPI_Comm_rank */
MPID_VCRT vcrt; /* virtual connecton reference table */
MPID_VCR * vcr; /* alias to the array of virtual connections

in vcrt */
MPID_VCRT local_vcrt; /* local virtual connecton reference table */
MPID_VCR * local_vcr; /* alias to the array of local virtual

connections in local vcrt */
MPID_Attribute *attributes; /* List of attributes */
int local_size; /* Value of MPI_Comm_size for local group */
MPID_Group *local_group, /* Groups in communicator. */

*remote_group; /* The local and remote groups are the
same for intra communicators */

MPID_Comm_kind_t comm_kind; /* MPID_INTRACOMM or MPID_INTERCOMM */
char name[MPI_MAX_OBJECT_NAME]; /* Required for MPI-2 */
MPID_Errhandler *errhandler; /* Pointer to the error handler structure */
struct MPID_Comm *local_comm; /* Defined only for intercomms, holds

an intracomm for the local group */
int is_low_group; /* For intercomms only, this boolean is

set for all members of one of the
two groups of processes and clear for
the other. It enables certain
intercommunicator collective operations
that wish to use half-duplex operations
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to implement a full-duplex operation */
struct MPID_Collops *coll_fns; /* Pointer to a table of functions

implementing the collective
routines */

#ifdef MPID_HAS_HETERO
int is_hetero;

#endif
/* Other, device-specific information */

#ifdef MPID_DEV_COMM_DECL
MPID_DEV_COMM_DECL

#endif
} MPID_Comm;

Notes

Note that the size and rank duplicate data in the groups that make up this communicator. These
are used often enough that this optimization is valuable.
This definition provides only a 16-bit integer for context id’s . This should be sufficient for most
applications. However, extending this to a 32-bit (or longer) integer should be easy.
The virtual connection table is an explicit member of this structure. This contains the information
used to contact a particular process, indexed by the rank relative to this communicator.
Groups are allocated lazily. That is, the group pointers may be null, created only when needed by a
routine such as MPI_Comm_group. The local process ids needed to form the group are available
within the virtual connection table. For intercommunicators, we may want to always have the
groups. If not, we either need the local_group or we need a virtual connection table corresponding
to the local_group (we may want this anyway to simplify the implementation of the
intercommunicator collective routines).
The pointer to the structure MPID_Collops containing pointers to the collective routines allows an
implementation to replace each routine on a routine-by-routine basis. By default, this pointer is null,
as are the pointers within the structure. If either pointer is null, the implementation uses the generic
provided implementation. This choice, rather than initializing the table with pointers to all of the
collective routines, is made to reduce the space used in the communicators and to eliminate the need
to include the implementation of all collective routines in all MPI executables, even if the routines
are not used.
The macro MPID_HAS_HETERO may be defined by a device to indicate that the device supports MPI
programs that must communicate between processes with different data representations (e.g.,
different sized integers or different byte orderings). If the device does need to define this value, it
should be defined in the file mpidpre.h.

Module

Communicator-DS

Question

For fault tolerance, do we want to have a standard field for communicator health? For example, ok,
failure detected, all (live) members of failed communicator have acked.

MPID_Group — Description of the Group data structure
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Synopsis

typedef struct MPID_Group {
int handle;
volatile int ref_count;
int size; /* Size of a group */
int rank; /* rank of this process relative to this

group */
int idx_of_first_lpid;
MPID_Group_pmap_t *lrank_to_lpid; /* Array mapping a local rank to local

process number */
/* We may want some additional data for the RMA syncrhonization calls */

/* Other, device-specific information */
#ifdef MPID_DEV_GROUP_DECL

MPID_DEV_GROUP_DECL
#endif
} MPID_Group;

The processes in the group of MPI_COMM_WORLD have lpid values 0 to size-1, where size is the size
of MPI_COMM_WORLD. Processes created by MPI_Comm_spawn or MPI_Comm_spawn_multiple or added
by MPI_Comm_attach or MPI_Comm_connect are numbered greater than size - 1 (on the calling
process). See the discussion of LocalPID values.
Note that when dynamic process creation is used, the pids are not unique across the universe of
connected MPI processes. This is ok, as long as pids are interpreted only on the process that owns
them.
Only for MPI-1 are the lpid’s equal to the global pids. The local pids can be thought of as a reference
not to the remote process itself, but how the remote process can be reached from this process. We
may want to have a structure MPID_Lpid_t that contains information on the remote process, such as
(for TCP) the hostname, ip address (it may be different if multiple interfaces are supported; we may
even want plural ip addresses for stripping communication), and port (or ports). For shared memory
connected processes, it might have the address of a remote queue. The lpid number is an index into
a table of MPID_Lpid_t’s that contain this (device- and method-specific) information.

Module

Group-DS

MPID_Win — Description of the Window Object data structure.

Synopsis

typedef struct MPID_Win {
int handle; /* value of MPI_Win for this structure */
volatile int ref_count;
int fence_cnt; /* 0 = no fence has been called;

1 = fence has been called */
MPID_Errhandler *errhandler; /* Pointer to the error handler structure */
void *base;
MPI_Aint size;
int disp_unit; /* Displacement unit of *local* window */
MPID_Attribute *attributes;
MPID_Group *start_group_ptr; /* group passed in MPI_Win_start */
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int start_assert; /* assert passed to MPI_Win_start */
MPI_Comm comm; /* communicator of window (dup) */
volatile int my_counter; /* completion counter for operations

targeting this window */
void **base_addrs; /* array of base addresses of the windows of

all processes */
int *disp_units; /* array of displacement units of all windows */
int **all_counters; /* array of addresses of the completion

counters of all processes */
#ifdef USE_THREADED_WINDOW_CODE

/* These were causing compilation errors. We need to figure out how to
integrate threads into MPICH2 before including these fields. */

#ifdef HAVE_PTHREAD_H
pthread_t wait_thread_id; /* id of thread handling MPI_Win_wait */
pthread_t passive_target_thread_id; /* thread for passive target RMA */

#elif defined(HAVE_WINTHREADS)
HANDLE wait_thread_id;
HANDLE passive_target_thread_id;

#endif
#endif

/* These are COPIES of the values so that addresses to them
can be returned as attributes. They are initialized by the
MPI_Win_get_attr function */

int copyDispUnit;
MPI_Aint copySize;

char name[MPI_MAX_OBJECT_NAME];
/* Other, device-specific information */

#ifdef MPID_DEV_WIN_DECL
MPID_DEV_WIN_DECL

#endif
} MPID_Win;

Module

Win-DS

Notes

The following 3 keyvals are defined for attributes on all MPI Window objects:

MPI_WIN_SIZE
MPI_WIN_BASE
MPI_WIN_DISP_UNIT

These correspond to the values in length, start_address, and disp_unit.
The communicator in the window is the same communicator that the user provided to
MPI_Win_create (not a dup). However, each intracommunicator has a special context id that may
be used if MPI communication is used by the implementation to implement the RMA operations.
There is no separate window group; the group of the communicator should be used.
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Question

Should a MPID_Win be defined after MPID_Segment in case the device wants to store a queue of
pending put/get operations, described with MPID_Segment (or MPID_Request)s?

MPID_Op — MPI_Op structure

Synopsis

typedef struct MPID_Op {
int handle; /* value of MPI_Op for this structure */
volatile int ref_count;
MPID_Op_kind kind;
MPID_Lang_t language;
MPID_User_function function;

} MPID_Op;

Notes

All of the predefined functions are commutative. Only user functions may be noncummutative, so
there are two separate op types for commutative and non-commutative user-defined operations.
Operations do not require reference counts because there are no nonblocking operations that accept
user-defined operations. Thus, there is no way that a valid program can free an MPI_Op while it is in
use.

Module

Collective-DS

MPID_Datatype — Description of the MPID Datatype structure

Synopsis

typedef struct MPID_Datatype {
int handle; /* value of MPI_Datatype for structure */
volatile int ref_count;
int is_contig; /* True if data is contiguous (even with

a (count,datatype) pair) */
int n_contig_blocks; /* number of contiguous blocks in one instance of this type */
int size; /* Q: maybe this should be in the dataloop? */
MPI_Aint extent; /* MPI-2 allows a type to be created by

resizing (the extent of) an existing
type */

MPI_Aint ub, lb, /* MPI-1 upper and lower bounds */
true_ub, true_lb; /* MPI-2 true upper and lower bounds */

int alignsize; /* size of datatype to align (affects pad) */
/* The remaining fields are required but less frequently used, and

are placed after the more commonly used fields */
int loopsize; /* size of loops for this datatype in bytes; derived value */
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struct MPID_Dataloop *loopinfo; /* Original loopinfo, used when
* creating and when getting contents */

int has_sticky_ub; /* The MPI_UB and MPI_LB are sticky */
int has_sticky_lb;
int is_permanent; /* True if datatype is a predefined type */
int is_committed; /* */

int eltype; /* type of elementary datatype. Needed
to implement MPI_Accumulate */

int loopinfo_depth; /* Depth of dataloop stack needed
to process this datatype. This
information is used to ensure that
no datatype is constructed that
cannot be processed (see MPID_Segment) */

struct MPID_Attribute *attributes; /* MPI-2 adds datatype attributes */

int32_t cache_id; /* These are used to track which processes */
/* MPID_Lpidmask mask; */ /* have cached values of this datatype */

char name[MPI_MAX_OBJECT_NAME]; /* Required for MPI-2 */

/* The following is needed to efficiently implement MPI_Get_elements */
int n_elements; /* Number of basic elements in this datatype */
MPI_Aint element_size; /* Size of each element or -1 if elements are

not all the same size */
MPID_Datatype_contents *contents;
/* int (*free_fn)( struct MPID_Datatype * ); */ /* Function to free this datatype */
/* Other, device-specific information */

#ifdef MPID_DEV_DATATYPE_DECL
MPID_DEV_DATATYPE_DECL

#endif
} MPID_Datatype;

Notes

The ref_count is needed for nonblocking operations such as

MPI_Type_struct( ... , &newtype );
MPI_Irecv( buf, 1000, newtype, ..., &request );
MPI_Type_free( &newtype );
...
MPI_Wait( &request, &status );

Module

Datatype-DS
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Notes

Alternatives

The following alternatives for the layout of this structure were considered. Most were not chosen
because any benefit in performance or memory efficiency was outweighed by the added complexity of
the implementation.
A number of fields contain only boolean inforation (is_contig, has_sticky_ub, has_sticky_lb,
is_permanent, is_committed). These could be combined and stored in a single bit vector.
MPI_Type_dup could be implemented with a shallow copy, where most of the data fields, particularly
the opt_dataloop field, would not be copied into the new object created by MPI_Type_dup; instead,
the new object could point to the data fields in the old object. However, this requires more code to
make sure that fields are found in the correct objects and that deleting the old object doesnt
invalidate the duped datatype.
A related optimization would point to the opt_dataloop and dataloop fields in other datatypes.
This has the same problems as the shallow copy implementation.
In addition to the separate dataloop and opt_dataloop fields, we could in addition have a separate
hetero_dataloop optimized for heterogeneous communication for systems with different data
representations.
Earlier versions of the ADI used a single API to change the ref_count, with each MPI object type
having a separate routine. Since reference count changes are always up or down one, and since all
MPI objects are defined to have the ref_count field in the same place, the current ADI3 API uses
two routines, MPIU_Object_add_ref and MPIU_Object_release_ref, to increment and decrement
the reference count.

MPID_Info — Structure of an MPID info

Synopsis

typedef struct MPID_Info {
int handle;
struct MPID_Info *next;
char *key;
char *value;

} MPID_Info;

Notes

There is no reference count because MPI_Info values, unlike other MPI objects, may be changed
after they are passed to a routine without changing the routine’s behavior. In other words, any
routine that uses an MPI_Info object must make a copy or otherwise act on any info value that it
needs.
A linked list is used because the typical MPI_Info list will be short and a simple linked list is easy to
implement and to maintain. Similarly, a single structure rather than separate header and element
structures are defined for simplicity. No separate thread lock is provided because info routines are
not performance critical; they use the common_lock in the MPIR_Process structure when they need
a thread lock.
This particular form of linked list (in particular, with this particular choice of the first two members)
is used because it allows us to use the same routines to manage this list as are used to manage the
list of free objects (in the file src/util/mem/handlemem.c). In particular, if lock-free routines for
updating a linked list are provided, they can be used for managing the MPID_Info structure as well.
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The MPI standard requires that keys can be no less that 32 characters and no more than 255
characters. There is no mandated limit on the size of values.

Module

Info-DS

MPID_Errhandler — Description of the error handler structure

Synopsis

typedef struct MPID_Errhandler {
int handle;
volatile int ref_count;
MPID_Lang_t language;
MPID_Object_kind kind;
MPID_Errhandler_fn errfn;
/* Other, device-specific information */

#ifdef MPID_DEV_ERRHANDLER_DECL
MPID_DEV_ERRHANDLER_DECL

#endif
} MPID_Errhandler;

Notes

Device-specific information may indicate whether the error handler is active; this can help prevent
infinite recursion in error handlers caused by user-error without requiring the user to be as careful.
We might want to make this part of the interface so that the MPI_xxx_call_errhandler routines
would check.
It is useful to have a way to indicate that the errhandler is no longer valid, to help catch the case
where the user has freed the errhandler but is still using a copy of the MPI_Errhandler value. We
may want to define the id value for deleted errhandlers.

Module

ErrHand-DS

MPID_Keyval — Structure of an MPID keyval

Synopsis

typedef struct MPID_Keyval {
int handle;
volatile int ref_count;
MPID_Lang_t language;
MPID_Object_kind kind;
void *extra_state;
MPID_Copy_function copyfn;
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MPID_Delete_function delfn;
/* other, device-specific information */

#ifdef MPID_DEV_KEYVAL_DECL
MPID_DEV_KEYVAL_DECL

#endif
} MPID_Keyval;

Module

Attribute-DS

MPID_Attribute — Structure of an MPID attribute

Synopsis

typedef struct MPID_Attribute {
int handle;
volatile int ref_count;
MPID_Keyval *keyval; /* Keyval structure for this attribute */
struct MPID_Attribute *next; /* Pointer to next in the list */
long pre_sentinal; /* Used to detect user errors in accessing

the value */
void * value; /* Stored value */
long post_sentinal; /* Like pre_sentinal */
/* other, device-specific information */

#ifdef MPID_DEV_ATTR_DECL
MPID_DEV_ATTR_DECL

#endif
} MPID_Attribute;

Notes

Attributes don’t have ref_counts because they don’t have reference count semantics. That is, there
are no shallow copies or duplicates of an attibute. An attribute is copied when the communicator
that it is attached to is duplicated. Subsequent operations, such as MPI_Comm_attr_free, can
change the attribute list for one of the communicators but not the other, making it impractical to
keep the same list. (We could defer making the copy until the list is changed, but even then, there
would be no reference count on the individual attributes.)
A pointer to the keyval, rather than the (integer) keyval itself is used since there is no need within
the attribute structure to make it any harder to find the keyval structure.
The attribute value is a void *. If sizeof(MPI_Fint) > sizeof(void*), then this must be
changed (no such system has been encountered yet). For the Fortran 77 routines in the case where
sizeof(MPI_Fint) < sizeof(void*), the high end of the void * value is used. That is, we cast it
to MPI_Fint * and use that value.

Module

Attribute-DS
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A.3 Threads

Thread support in MPI requires both a thread-safe device and thread-safe handling of MPI objects
that may be shared among threads. These routines provide for atomic updates to reference counts on
MPI objects. Other routines provide thread locks on a communicator basis, as well as a process-wide
thread lock that may be used when such a coarse-grain lock is sufficient.

MPID_MAX_THREAD_LEVEL — Indicates the maximum level of thread support provided at
compile time.

Values

Any of the MPI_THREAD_xxx values (these are preprocessor-time constants)

Notes

The macro MPID_MAX_THREAD_LEVEL defines the maximum level of thread support provided, and
may be used at compile time to remove thread locks and other code needed only in a multithreaded
environment.
A typical use is

#if MPID_MAX_THREAD_LEVEL >= MPI_THREAD_MULTIPLE
lock((r)->lock_ptr);
(r)->ref_count++;
unlock((r)->lock_ptr);

#else
(r)->ref_count ++;

#fi

Module

Environment-DS

MPIU_Object_add_ref — Increment the reference count for an MPI object

Synopsis

.vb
MPIU_Object_add_ref( MPIU_Object *ptr )
.ve

Input Parameter

ptr Pointer to the object.
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Notes

In an unthreaded implementation, this function will usually be implemented as a single-statement
macro. In an MPI_THREAD_MULTIPLE implementation, this routine must implement an atomic
increment operation, using, for example, a lock on datatypes or special assembly code such as

try-again:
load-link refcount-address to r2
add 1 to r2
store-conditional r2 to refcount-address
if failed branch to try-again:

on RISC architectures or

lock
inc refcount-address or

on IA32; ”lock” is a special opcode prefix that forces atomicity. This is not a separate instruction;
however, the GNU assembler expects opcode prefixes on a separate line.

Module

MPID_CORE

Question

This accesses the ref_count member of all MPID objects. Currently, that member is typed as
volatile int. However, for a purely polling, thread-funnelled application, the volatile is
unnecessary. Should MPID objects use a typedef for the ref_count that can be defined as
volatile only when needed? For now, the answer is no; there isn’t enough to be gained in that case.

MPIU_Object_release_ref — Decrement the reference count for an MPI object

Synopsis

.vb
MPIU_Object_release_ref( MPIU_Object *ptr, int *inuse_ptr )
.ve

Input Parameter

objptr Pointer to the object.

Output Parameter

inuse_ptr Pointer to the value of the reference count after decrementing. This value is either
zero or non-zero. See below for details.
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Notes

In an unthreaded implementation, this function will usually be implemented as a single-statement
macro. In an MPI_THREAD_MULTIPLE implementation, this routine must implement an atomic
decrement operation, using, for example, a lock on datatypes or special assembly code such as

try-again:
load-link refcount-address to r2
sub 1 to r2
store-conditional r2 to refcount-address
if failed branch to try-again:
store r2 to newval_ptr

on RISC architectures or

lock
dec refcount-address
if zf store 0 to newval_ptr else store 1 to newval_ptr

on IA32; ”lock” is a special opcode prefix that forces atomicity. This is not a separate instruction;
however, the GNU assembler expects opcode prefixes on a separate line. zf is the zero flag; this is
set if the result of the operation is zero. Implementing a full decrement-and-fetch would require
more code and the compare and swap instruction.
Once the reference count is decremented to zero, it is an error to change it. A correct MPI program
will never do that, but an incorrect one (particularly a multithreaded program with a race
condition) might.
The following code is invalid:

MPID_Object_release_ref( datatype_ptr );
if (datatype_ptr->ref_count == 0) MPID_Datatype_free( datatype_ptr );

In a multi-threaded implementation, the value of datatype_ptr->ref_count may have been
changed by another thread, resulting in both threads calling MPID_Datatype_free. Instead, use

MPID_Object_release_ref( datatype_ptr, &inUse );
if (!inuse)

MPID_Datatype_free( datatype_ptr );

Module

MPID_CORE

MPID_Comm_thread_lock — Acquire a thread lock for a communicator

Synopsis

.vb
void MPID_Comm_thread_lock( MPID_Comm *comm )
.ve

Input Parameter

comm Communicator to lock
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Notes

This routine acquires a lock among threads in the same MPI process that may use this
communicator. In all MPI thread modes except for MPI_THREAD_MULTIPLE, this can be a no-op. In
an MPI implementation that does not provide MPI_THREAD_MULTIPLE, this may be a macro.
It is invalid for a thread that has acquired the lock to attempt to acquire it again. The lock must be
released by MPID_Comm_thread_unlock.
Note that there is also a common per-process lock (common_lock). That lock should be used instead
of a lock on lock on MPI_COMM_WORLD when a lock across all threads is required.
A high-quality implementation may wish to provide fair access to the lock.
In general, the MPICH implementation tries to avoid using locks because they can cause problems
such as livelock and deadlock, particularly when an error occurs. However, the semantics of MPI
collective routines make it difficult to avoid using locks. Further, good programming practice by
MPI programmers should be to avoid having multiple threads using the same communicator.

Module

Communicator

See Also

MPID_Comm_thread_unlock

Questions

Do we also need versions of this for datatypes and window objects? For example, communicators,
datatypes, and window objects all have attributes; do we need a thread lock for each type? Should
we instead have an MPI Object, on which some common operations, such as thread lock, reference
count, and name are implemented? Note that there is a common lock for operations that are
infrequently performed and do not require fine-grain locking.

MPID_Comm_thread_unlock — Release a thread lock for a communicator

Synopsis

.vb
void MPID_Comm_thread_unlock( MPID_Comm *comm )
.ve

Input Parameter

comm Communicator to unlock

Module

Communicator
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See Also

MPID_Comm_thread_lock

B Basic Point-to-Point

This section provides definitions for the point-to-point communication functions. These roughly
parallel their MPI counterparts, with the exception that all (even MPID_Send and MPID_Recv are
non-blocking, and the optional MPID_tBsend routine that may be used to improve the performance of
buffered sends.

MPID_Send — MPID entry point for MPI_Send

Synopsis

int MPID_Send( const void *buf, int count, MPI_Datatype datatype,
int dest, int tag, MPID_Comm *comm, int context_offset,
MPID_Request **request )

Notes

The only difference between this and MPI_Send is that the basic error checks (e.g., valid
communicator, datatype, dest, and tag) have been made, the MPI opaque objects have been
replaced by MPID objects, a context id offset is provided in addition to the communicator, and a
request may be returned. The context offset is added to the context of the communicator to get the
context it used by the message. A request is returned only if the ADI implementation was unable to
complete the send of the message. In that case, the usual MPI_Wait logic should be used to
complete the request. This approach is used to allow a simple implementation of the ADI. The ADI
is free to always complete the message and never return a request.

Module

Communication

MPID_Ssend — MPID entry point for MPI_Ssend

Synopsis

int MPID_Ssend( const void *buf, int count, MPI_Datatype datatype,
int dest, int tag, MPID_Comm *comm, int context_offset,
MPID_Request **request )

Notes

The only difference between this and MPI_Ssend is that the basic error checks (e.g., valid
communicator, datatype, dest, and tag) have been made, the MPI opaque objects have been
replaced by MPID objects, a context id offset is provided in addition to the communicator, and a
request may be returned. The context offset is added to the context of the communicator to get the
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context it used by the message. A request is returned only if the ADI implementation was unable to
complete the send of the message. In that case, the usual MPI_Wait logic should be used to
complete the request. This approach is used to allow a simple implementation of the ADI. The ADI
is free to always complete the message and never return a request.

Module

Communication

MPID_Rsend — MPID entry point for MPI_Rsend

Synopsis

int MPID_Rsend( const void *buf, int count, MPI_Datatype datatype,
int dest, int tag, MPID_Comm *comm, int context_offset,
MPID_Request **request )

Notes

The only difference between this and MPI_Rsend is that the basic error checks (e.g., valid
communicator, datatype, dest, and tag) have been made, the MPI opaque objects have been
replaced by MPID objects, a context id offset is provided in addition to the communicator, and a
request may be returned. The context offset is added to the context of the communicator to get the
context it used by the message. A request is returned only if the ADI implementation was unable to
complete the send of the message. In that case, the usual MPI_Wait logic should be used to
complete the request. This approach is used to allow a simple implementation of the ADI. The ADI
is free to always complete the message and never return a request.

Module

Communication

MPID_Isend — MPID entry point for MPI_Isend

Synopsis

int MPID_Isend( const void *buf, int count, MPI_Datatype datatype,
int dest, int tag, MPID_Comm *comm, int context_offset,
MPID_Request **request )

Notes

The only difference between this and MPI_Isend is that the basic error checks (e.g., valid
communicator, datatype, dest, and tag) have been made, the MPI opaque objects have been
replaced by MPID objects, and a context id offset is provided in addition to the communicator. This
offset is added to the context of the communicator to get the context it used by the message.
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Module

Communication

MPID_Issend — MPID entry point for MPI_Issend

Synopsis

int MPID_Issend( const void *buf, int count, MPI_Datatype datatype,
int dest, int tag, MPID_Comm *comm, int context_offset,
MPID_Request **request )

Notes

The only difference between this and MPI_Issend is that the basic error checks (e.g., valid
communicator, datatype, dest, and tag) have been made, the MPI opaque objects have been
replaced by MPID objects, and a context id offset is provided in addition to the communicator. This
offset is added to the context of the communicator to get the context it used by the message.

Module

Communication

MPID_Irsend — MPID entry point for MPI_Irsend

Synopsis

int MPID_Irsend( const void *buf, int count, MPI_Datatype datatype,
int dest, int tag, MPID_Comm *comm, int context_offset,
MPID_Request **request )

Notes

The only difference between this and MPI_Irsend is that the basic error checks (e.g., valid
communicator, datatype, dest, and tag) have been made, the MPI opaque objects have been
replaced by MPID objects, and a context id offset is provided in addition to the communicator. This
offset is added to the context of the communicator to get the context it used by the message.

Module

Communication

MPID_tBsend — Attempt a send and return if it would block
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Synopsis

int MPID_tBsend( const void *buf, int count, MPI_Datatype datatype,
int dest, int tag, MPID_Comm *comm, int context_offset )

Notes

This has the semantics of MPI_Bsend, except that it returns the internal error code
MPID_WOULD_BLOCK if the message can’t be sent immediately (t is for ”try”).
The reason that this interface is chosen over a query to check whether a message can be sent is that
the query approach is not thread-safe. Since the decision on whether a message can be sent without
blocking depends (among other things) on the state of flow control managed by the device, this
approach also gives the device the greatest freedom in implementing flow control. In particular, if
another MPI process can change the flow control parameters, then even in a single-threaded
implementation, it would not be safe to return, for example, a message size that could be sent with
MPI_Bsend.
This routine allows an MPI implementation to optimize MPI_Bsend for the case when the message
can be delivered without blocking the calling process. An ADI implementation is free to have this
routine always return MPID_WOULD_BLOCK, but is encouraged not to.
To allow the MPI implementation to avoid trying this routine when it is not implemented by the
ADI, the C preprocessor constant MPID_HAS_TBSEND should be defined if this routine has a
nontrivial implementation.
This is an optional routine. The MPI code for MPI_Bsend will attempt to call this routine only if the
device defines MPID_HAS_TBSEND.

Module

Communication

MPID_Recv — MPID entry point for MPI_Recv

Synopsis

int MPID_Recv( void *buf, int count, MPI_Datatype datatype,
int source, int tag, MPID_Comm *comm, int context_offset,
MPI_Status *status, MPID_Request **request )

Notes

The only difference between this and MPI_Recv is that the basic error checks (e.g., valid
communicator, datatype, source, and tag) have been made, the MPI opaque objects have been
replaced by MPID objects, a context id offset is provided in addition to the communicator, and a
request may be returned. The context offset is added to the context of the communicator to get the
context it used by the message. As in MPID_Send, the request is returned only if the operation did
not complete. Conversely, the status object is populated with valid information only if the operation
completed.



B BASIC POINT-TO-POINT 40

Module

Communication

MPID_Irecv — MPID entry point for MPI_Irecv

Synopsis

int MPID_Irecv( void *buf, int count, MPI_Datatype datatype,
int source, int tag, MPID_Comm *comm, int context_offset,
MPID_Request **request )

Notes

The only difference between this and MPI_Irecv is that the basic error checks (e.g., valid
communicator, datatype, source, and tag) have been made, the MPI opaque objects have been
replaced by MPID objects, and a context id offset is provided in addition to the communicator. This
offset is added to the context of the communicator to get the context it used by the message.

Module

Communication

MPID_Request_release — Release a request

Synopsis

void MPID_Request_release(MPID_Request *)

Input Parameter

request request to release

Notes

This routine is called to release a reference to request object. If the reference count of the request
object has reached zero, the object will be deallocated.

Module

Request

MPID_Cancel_send — Cancel the indicated send request

Synopsis

int MPID_Cancel_send(MPID_Request *)
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Input Parameter

request Send request to cancel

Return Value

MPI error code.

Notes

Cancel is a tricky operation, particularly for sends. Read the discussion in the MPI-1 and MPI-2
documents carefully. This call only requests that the request be cancelled; a subsequent wait or test
must first succeed (i.e., the request completion counter must be zeroed).

Module

Request

MPID_Cancel_recv — Cancel the indicated recv request

Synopsis

int MPID_Cancel_recv(MPID_Request *)

Input Parameter

request Receive request to cancel

Return Value

MPI error code.

Notes

This cancels a pending receive request. In many cases, this is implemented by simply removing the
request from a pending receive request queue. However, some ADI implementations may maintain
these queues in special places, such as within a NIC (Network Interface Card). This call only
requests that the request be cancelled; a subsequent wait or test must first succeed (i.e., the request
completion counter must be zeroed).

Module

Request

MPID_Iprobe — Look for a matching request in the receive queue but do not remove or return it
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Synopsis

int MPID_Iprobe(int, int, MPID_Comm *, int, int *, MPI_Status *)

Input Parameters

source rank to match (or MPI_ANY_SOURCE)
tag Tag to match (or MPI_ANY_TAG)
comm communicator to match.
context_offset

context id offset of communicator to match

Output Parameter

flag true if a matching request was found, false otherwise.
status MPI_Status set as defined by MPI_Iprobe (only valid when return flag is true).

Return Value

Error Code.

Notes

Note that the values returned in status will be valid for a subsequent MPI receive operation only if
no other thread attempts to receive the same message. (See the discussion of probe in Section 8.7.2
(Clarifications) of the MPI-2 standard.)
Providing the context_offset is necessary at this level to support the way in which the MPICH
implementation uses context ids in the implementation of other operations. The communicator is
present to allow the device to use message-queues attached to particular communicators or
connections between processes.
Devices that rely solely on polling to make progress should call MPID_Progress_poke() (or some
equivalent function) if a matching request could not be found. This insures that progress continues
to be made even if the application is calling MPI_Iprobe() from within a loop not containing calls to
any other MPI functions.

Module

Request

MPID_Probe — Block until a matching request is found and return information about it

Synopsis

int MPID_Probe(int, int, MPID_Comm *, int, MPI_Status *)
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Input Parameters

source rank to match (or MPI_ANY_SOURCE)
tag Tag to match (or MPI_ANY_TAG)
comm communicator to match.
context_offset

context id offset of communicator to match

Output Parameter

status MPI_Status set as defined by MPI_Probe

Return Value

Error code.

Notes

Note that the values returned in status will be valid for a subsequent MPI receive operation only if
no other thread attempts to receive the same message. (See the discussion of probe in Section 8.7.2
Clarifications of the MPI-2 standard.)
Providing the context_offset is necessary at this level to support the way in which the MPICH
implementation uses context ids in the implementation of other operations. The communicator is
present to allow the device to use message-queues attached to particular communicators or
connections between processes.

Module

Request

C Persistent Point-to-Point

This section provides the definitions for the persistent communication routines. Note that there is no
MPID_Start routine; we currently believe that MPID_Startall is all that is required, as it is easy to
implement MPI_Start with MPID_Startall, and MPID_Startall is required to allow the device the
option of scheduling communication for all of the requests passed to it.

MPID_Send_init — MPID entry point for MPI_Send_init

Synopsis

int MPID_Send_init( const void *buf, int count, MPI_Datatype datatype,
int dest, int tag, MPID_Comm *comm, int context_offset,
MPID_Request **request )
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Notes

The only difference between this and MPI_Send_init is that the basic error checks (e.g., valid
communicator, datatype, dest, and tag) have been made, the MPI opaque objects have been
replaced by MPID objects, and a context id offset is provided in addition to the communicator. This
offset is added to the context of the communicator to get the context it used by the message.

Module

Communication

MPID_Ssend_init — MPID entry point for MPI_Ssend_init

Synopsis

int MPID_Ssend_init( const void *buf, int count, MPI_Datatype datatype,
int dest, int tag, MPID_Comm *comm, int context_offset,
MPID_Request **request )

Notes

The only difference between this and MPI_Ssend_init is that the basic error checks (e.g., valid
communicator, datatype, dest, and tag) have been made, the MPI opaque objects have been
replaced by MPID objects, and a context id offset is provided in addition to the communicator. This
offset is added to the context of the communicator to get the context it used by the message.

Module

Communication

MPID_Rsend_init — MPID entry point for MPI_Rsend_init

Synopsis

int MPID_Rsend_init( const void *buf, int count, MPI_Datatype datatype,
int dest, int tag, MPID_Comm *comm, int context_offset,
MPID_Request **request )

Notes

The only difference between this and MPI_Rsend_init is that the basic error checks (e.g., valid
communicator, datatype, dest, and tag) have been made, the MPI opaque objects have been
replaced by MPID objects, and a context id offset is provided in addition to the communicator. This
offset is added to the context of the communicator to get the context it used by the message.



D GENERALIZED REQUESTS 45

Module

Communication

MPID_Recv_init — MPID entry point for MPI_Recv_init

Synopsis

int MPID_Recv_init( void *buf, int count, MPI_Datatype datatype,
int source, int tag, MPID_Comm *comm, int context_offset,
MPID_Request **request )

Notes

The only difference between this and MPI_Recv_init is that the basic error checks (e.g., valid
communicator, datatype, source, and tag) have been made, the MPI opaque objects have been
replaced by MPID objects, and a context id offset is provided in addition to the communicator. This
offset is added to the context of the communicator to get the context it used by the message.

Module

Communication

MPID_Startall — MPID entry point for MPI_Startall

Synopsis

int MPID_Startall(int count, MPID_Request *requests[])

Notes

The only difference between this and MPI_Startall is that the basic error checks (e.g., count) have
been made, and the MPI opaque objects have been replaced by pointers to MPID objects.

Rationale

This allows the device to schedule communication involving multiple requests, whereas an
implementation built on just MPID_Start would force the ADI to initiate the communication in the
order encountered.

D Generalized Requests

This section provides the interface to the generalized (user-defined) requests.

MPID_Request_create — Create and return a bare request
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Synopsis

MPID_Request * MPID_Request_create(void)

Return value

A pointer to a new request object.

Notes

This routine is intended for use by MPI_Grequest_start only. Note that once a request is created
with this routine, any progress engine must assume that an outside function can complete a request
with MPID_Request_set_completed.
The request object returned by this routine should be initialized such that ref_count is one and
handle contains a valid handle referring to the object.

E Data Segment

F Communication Buffer management

The routines in this section fill two roles. In the implementation of routines such as MPID_Isend
where the only device-specific routines are the few in MPID_CORE, it is necessary to have the ability
to pack and unpack partial messages. Consider the case where the user calls MPI_Isend( buf,
1, my_huge_indexed_type, ... ) where the total amount of data being sent is 100 MB. Since
MPID_CORE can only move contiguous data, we need to convert the described data into a sequence of
contiguous memory segments of some reasonable size (we dont want to have to allocate a 100 MB
temporary buffer). Thus, to implement this operation, we need a routine that can be called repeatedly
to get the next m bytes from the users described data buffer. Further, we need to be able to pause
and remember where we are in processing a datatype. The MPI unpack routine does not have this
flexibility.

The other place where these routines are needed is in the implementation of efficient versions of
the MPI collective communication routines. These algorithms often need to look at the message as
a range of bytes from which segments are extracted and moved. The implementation of the MPI
collective routines provided with MPICH will use these routines express the algorithms.

These routines also provide a way to specify a data area that may be used in store-and-forward
algorithms, without requiring copies to and from an intermediate device buffer.

Note that MPID_Requests include a segment descriptoin within them.

G Process Topology

This section describes a routine that allows the device to communicate information on the process
topology to the MPI process topology routines. This routine is designed for hierarchically-organized
machines. Additional routines for other topologies (e.g., a scalable mesh topology) will be considered
as needed.

MPID_Topo_cluster_info — Return information on the hierarchy of interconnections
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Synopsis

int MPID_Topo_cluster_info( MPID_Comm *comm,
int *levels, int my_cluster[], int my_rank[] )

Input Parameter

comm Communicator to study. May be NULL, in which case MPI_COMM_WORLD is the
effective communicator.

Output Parameters

levels The number of levels in the hierarchy. To simplify the use of this routine, the
maximum value is MPID_TOPO_CLUSTER_MAX_LEVELS (typically 8 or less).

my_cluster For each level, the id of the cluster that the calling process belongs to.
my_rank For each level, the rank of the calling process in its cluster

Notes

This routine returns a description of the system in terms of nested clusters of processes. Levels are
numbered from zero. At each level, each process may belong to no more than cluster; if a process is
in any cluster at level i, it must be in some cluster at level i-1.
The communicator argument allows this routine to be used in the dynamic process case (i.e., with
communicators that are created after MPI_Init and that involve processes that are not part of
MPI_COMM_WORLD).
For non-hierarchical systems, this routine simply returns a single level containing all processes.

Sample Outputs

For a single, switch-connected cluster or a uniform-memory-access (UMA) symmetric multiprocessor
(SMP), the return values could be

level my_cluster my_rank
0 0 rank in comm_world

This is also a valid response for any device.
For a switch-connected cluster of 2 processor SMPs

level my_cluster my_rank
0 0 rank in comm_world
1 0 to p/2 0 or 1

where the value each process on the same SMP has the same value for my_cluster[1] and a
different value for my_rank[1].
For two SMPs connected by a network,

level my_cluster my_rank
0 0 rank in comm_world
1 0 or 1 0 to # on SMP

An example with more than 2 levels is a collection of clusters, each with SMP nodes.

Limitations

This approach does not provide a representations for topologies that are not hierarchical. For
example, a mesh interconnect is a single-level cluster in this view.
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Module

Topology

H Progress Engine

The progress engine provides a way for the MPI implementation and the ADI implementation to
coordinate progress on communication. The design makes no assumptions about whether the ADI
uses polling or a separate communication thread or interrupts or any other mechanism to make
progress.

Here are several implementation sketches. First, a polling implementation for a single-threaded
implementation:

MPID_Progress_start - no-op
MPID_Progress_end - no-op
MPID_Progress_test - select with no wait
MPID_Progress_wait - select with infinite wait
MPID_Progress_poke - select with no wait

A non-polling, single-threaded implementation that used a separate thread for communication
could use (this isn’t correct yet)

MPID_Progress_start - Set flag indicating checks in progress
MPID_Progress_end - Clear flag
MPID_Progress_test - yield to communication thread
MPID_Progress_wait - if no completions since flag set,

wait on condition variable. Otherwise, return.
MPID_Progress_poke - either no-op or yield to communication thread

See the generalized request functions in Section D for some additional requirements on the progress
engine.

MPID_Progress_start — Begin a block of operations that check the completion counters in
requests.

Synopsis

void MPID_Progress_start(void)

Notes

This routine is used to inform the progress engine that a block of code will examine the completion
counter of some MPID_Request objects and then call one of MPID_Progress_end,
MPID_Progress_wait, or MPID_Progress_test.
This routine is needed to properly implement blocking tests when multithreaded progress engines
are used. In a single-threaded implementation of the ADI, this may be defined as an empty macro.

Module

Communication

MPID_Progress_end — End a block of operations begun with MPID_Progress_start
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Synopsis

void MPID_Progress_end(void)

Notes

This instructs the progress engine to end the block begun with MPID_Progress_start. The progress
engine is not required to check for any pending communication.
The purpose of this call is to release any locks initiated by MPID_Progess_start. It is typically used
when checks of the relevant request completion counters found a completed request. In a single
threaded ADI implementation, this may be defined as an empty macro.

Module

Communication

MPID_Progress_test — Check for communication since MPID_Progress_start

Synopsis

int MPID_Progress_test(void)

Return value

An mpi error code.

Notes

Like MPID_Progress_end and MPID_Progress_wait, this completes the block begun with
MPID_Progress_start. Unlike MPID_Progress_wait, it is a nonblocking call. It returns the number
of communication events, which is only indicates the maximum number of separate requests that
were completed. The only restriction is that if the completion status of any request changed between
MPID_Progress_start and MPID_Progress_test, the return value must be at least one.
This function used to return TRUE if one or more requests have completed, FALSE otherwise. This
functionality was not used so we removed it.

Module

Communication

MPID_Progress_wait — Wait for some communication since MPID_Progress_start

Synopsis

int MPID_Progress_wait(void)
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Return value

An mpi error code.

Notes

This instructs the progress engine to wait until some communication event happens since
MPID_Progress_start was called. This call blocks the calling thread (only, not the process). Before
returning, it releases the block begun with MPID_Progress_start.

Module

Communication

MPID_Progress_poke — Allow a progress engine to check for pending communication

Synopsis

int MPID_Progress_poke(void)

Return value

An mpi error code.

Notes

This routine provides a way to invoke the progress engine in a polling implementation of the ADI.
This routine must be nonblocking.
A multithreaded implementation is free to define this as an empty macro.

Module

Communication

I Starting and stopping

MPID_Init — Initialize the device

Synopsis

int MPID_Init( int *argc_p, char ***argv_p,
int requested, int *provided,
/* MPID_Comm **parent_comm,*/ int *has_args, int *has_env )
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Input Parameters

argc_p Pointer to the argument count
argv_p Pointer to the argument list
requested Requested level of thread support. Values are the same as for the required

argument to MPI_Init_thread, except that we define an enum for these values.

Output Parameter

provided Provided level of thread support. May be less than the requested level of support.
parent_comm MPID_Comm of parent. This is null for all MPI-1 uses and for processes that are not

started with MPI_Comm_spawn or MPI_Comm_spawn_multiple.
has_args Set to true if argc_p and argv_p contain the command line arguments. See below.
has_env Set to true if the environment of the process has been set as the user expects. See

below.

Return value

Returns 0 on success and an MPI error code on failure. Failure can happen when, for example, the
device is unable to start or contact the number of processes specified by the mpiexec command.

Notes

Null arguments for argc_p and argv_p must be valid (see MPI-2, section 4.2)
Multi-method devices should initialize each method within this call. They can use environment
variables and/or command-line arguments to decide which methods to initialize (but note that they
must not depend on using command-line arguments).
This call also initializes all MPID data needed by the device. This includes the MPID_Requests and
any other data structures used by the device.
The arguments has_args and has_env indicate whether the process was started with command-line
arguments or environment variables. In some cases, only the root process is started with these
values; in others, the startup environment ensures that each process receives the command-line
arguments and environment variables that the user expects. While the MPI standard makes no
requirements that command line arguments or environment variables are provided to all processes,
most users expect a common environment. These variables allow an MPI implementation (that is
based on ADI-3) to provide both of these by making use of MPI communication after MPID_Init is
called but before MPI_Init returns to the user, if the process management environment does not
provide this service.
This routine is used to implement both MPI_Init and MPI_Init_thread.
Setting the environment requires a setenv function. Some systems may not have this. In that case,
the documentation must make clear that the environment may not be propagated to the generated
processes.
The parent_comm argument may not be the right interface.

Module

MPID_CORE

Questions

The values for has_args and has_env are boolean. They could be more specific. For example, the
value could indicate the rank in MPI_COMM_WORLD of a process that has the values; the value
MPI_ANY_SOURCE (or a -1) could indicate that the value is available on all processes (including this
one). We may want this since otherwise the processes may need to determine whether any process
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needs the command line. Another option would be to use positive values in the same way that the
color argument is used in MPI_Comm_split; a negative value indicates the member of the processes
with that color that has the values of the command line arguments (or environment). This allows for
non-SPMD programs.
Do we require that the startup environment (e.g., whatever mpiexec is using to start processes) is
responsible for delivering the command line arguments and environment variables that the user
expects? That is, if the user is running an SPMD program, and expects each process to get the same
command line argument, who is responsible for this? The has_args and has_env values are
intended to allow the ADI to handle this while taking advantage of any support that the process
manager framework may provide.
Alternately, how do we find out from the process management environment whether it took care of
the environment or the command line arguments? Do we need a PMI_Env_query function that can
answer these questions dynamically (in case a different process manager is used through the same
interface)?
Can we fix the Fortran command-line arguments? That is, can we arrange for iargc and getarg
(and the POSIX equivalents) to return the correct values? See, for example, the Absoft
implementations of getarg. We could also contact PGI about the Portland Group compilers, and of
course the g77 source code is available. Does each process have the same values for the environment
variables when this routine returns?
If we don’t require that all processes get the same argument list, we need to find out if they did
anyway so that MPI_Init_thread can fixup the list for the user. This argues for another return
value that flags how much of the environment the MPID_Init routine set up so that the
MPI_Init_thread call can provide the rest. The reason for this is that, even though the MPI
standard does not require it, a user-friendly implementation should, in the SPMD mode, give each
process the same environment and argument lists unless the user explicitly directed otherwise.
How does this interface to PMI? Do we need to know anything? Should this call have an info
argument to support PMI?
The following questions involve how environment variables and command line arguments are used to
control the behavior of the implementation. Many of these values must be determined at the time
that MPID_Init is called. These all should be considered in the context of the parameter routines
described in the MPICH2 Design Document.
Are there recommended environment variable names? For example, in ADI-2, there are many
debugging options that are part of the common device. In MPI-2, we can’t require command line
arguments, so any such options must also have environment variables. E.g., MPICH_ADI_DEBUG or
MPICH_ADI_DB.
Names that are explicitly prohibited? For example, do we want to reserve any names that
MPI_Init_thread (as opposed to MPID_Init) might use?
How does information on command-line arguments and environment variables recognized by the
device get added to the documentation?
What about control for other impact on the environment? For example, what signals should the
device catch (e.g., SIGFPE? SIGTRAP?)? Which of these should be optional (e.g., ignore or leave
signal alone) or selectable (e.g., port to listen on)? For example, catching SIGTRAP causes problems
for gdb, so we’d like to be able to leave SIGTRAP unchanged in some cases.
Another environment variable should control whether fault-tolerance is desired. If fault-tolerance is
selected, then some collective operations will need to use different algorithms and most fatal errors
detected by the MPI implementation should abort only the affected process, not all processes.

MPID_Finalize — Perform the device-specific termination of an MPI job

Synopsis

int MPID_Finalize(void)
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Return Value

MPI_SUCCESS or a valid MPI error code. Normally, this routine will return MPI_SUCCESS. Only in
extrordinary circumstances can this routine fail; for example, if some process stops responding
during the finalize step. In this case, MPID_Finalize should return an MPI error code indicating the
reason that it failed.

Notes

Module

MPID_CORE

Questions

Need to check the MPI-2 requirements on MPI_Finalize with respect to things like which process
must remain after MPID_Finalize is called.

MPID_Abort — Abort at least the processes in the specified communicator.

Synopsis

int MPID_Abort( MPID_Comm *comm, int mpi_errno, int exit_code )

Input Parameters

comm Communicator of processes to abort
mpi_errno MPI error code containing the reason for the abort
exit_code Exit code to return to the calling environment. See notes.

Return value

MPI_SUCCESS or an MPI error code. Normally, this routine should not return, since the calling
process must be a member of the communicator. However, under some circumstances, the
MPID_Abort might fail; in this case, returning an error indication is appropriate.

Notes

In a fault-tolerant MPI implementation, this operation should abort only the processes in the
specified communicator. Any communicator that shares processes with the aborted communicator
becomes invalid. For more details, see (paper not yet written on fault-tolerant MPI).
In particular, if the communicator is MPI_COMM_SELF, only the calling process should be aborted.
The exit_code is the exit code that this particular process will attempt to provide to the mpiexec
or other program invocation environment. See mpiexec for a discussion of how exit codes from many
processes may be combined.
An external agent that is aborting processes can invoke this with either MPI_COMM_WORLD or
MPI_COMM_SELF. For example, if the process manager wishes to abort a group of processes, it should
cause MPID_Abort to be invoked with MPI_COMM_SELF on each process in the group.
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Question

An alternative design is to provide an MPID_Group instead of a communicator. This would allow a
process manager to ask the ADI to kill an entire group of processes without needing a
communicator. However, the implementation of MPID_Abort will either do this by communicating
with other processes or by requesting the process manager to kill the processes. That brings up this
question: should MPID_Abort use PMI to kill processes? Should it be required to notify the process
manager? What about persistent resources (such as SYSV segments or forked processes)?
This suggests that for any persistent resource, an exit handler be defined. These would be executed
by MPID_Abort or MPID_Finalize. See the implementation of MPI_Finalize for an example of exit
callbacks. In addition, code that registered persistent resources could use persistent storage (i.e., a
file) to record that information, allowing cleanup utilities (such as mpiexec) to remove any resources
left after the process exits.
MPI_Finalize requires that attributes on MPI_COMM_SELF be deleted before anything else happens;
this allows libraries to attach end-of-job actions to MPI_Finalize. It is valuable to have a similar
capability on MPI_Abort, with the caveat that MPI_Abort may not guarantee that the run-on-abort
routines were called. This provides a consistent way for the MPICH implementation to handle
freeing any persistent resources. However, such callbacks must be limited since communication may
not be possible once MPI_Abort is called. Further, any callbacks must guarantee that they have
finite termination.
One possible extension would be to allow users to add actions to be run when MPI_Abort is called,
perhaps through a special attribute value applied to MPI_COMM_SELF. Note that is is incorrect to call
the delete functions for the normal attributes on MPI_COMM_SELF because MPI only specifies that
those are run on MPI_Finalize (i.e., normal termination).

Module

MPID_CORE

J Information about the device

MPID_Get_processor_name — Return the name of the current processor

Synopsis

int MPID_Get_processor_name( char *name, int *resultlen)

Output Parameters

name A unique specifier for the actual (as opposed to virtual) node. This must be an
array of size at least MPI_MAX_PROCESSOR_NAME.

resultlen Length (in characters) of the name

Notes

The name returned should identify a particular piece of hardware; the exact format is
implementation defined. This name may or may not be the same as might be returned by
gethostname, uname, or sysinfo.
This routine is essentially an MPID version of MPI_Get_processor_name . It must be part of the
device because not all environments support calls to return the processor name.
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K RMA

(not yet defined)

K.1 Memory Allocation for RMA

MPID_Mem_alloc — Allocate memory suitable for passive target RMA operations

Synopsis

void *MPID_Mem_alloc( size_t size, MPID_Info *info )

Input Parameter

size Number of types to allocate.
info Info object

Return value

Pointer to the allocated memory. If the memory is not available, returns null.

Notes

This routine is used to implement MPI_Alloc_mem. It is for that reason that there is no
communicator argument.
This memory may only be freed with MPID_Mem_free.
This is a local, not a collective operation. It functions more like a good form of malloc than
collective shared-memory allocators such as the shmalloc found on SGI systems.
Implementations of this routine may wish to use MPID_Memory_register. However, this routine has
slighly different requirements, so a separate entry point is provided.

Question

Since this takes an info object, should there be an error routine in the case that the info object
contains an error?

Module

Win

MPID_Mem_free — Frees memory allocated with MPID_Mem_alloc

Synopsis

int MPID_Mem_free( void *ptr )
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Input Parameter

ptr Pointer to memory allocated by MPID_Mem_alloc.

Return value

MPI_SUCCESS if memory was successfully freed; an MPI error code otherwise.

Notes

The return value is provided because it may not be easy to validate the value of ptr without
attempting to free the memory.

Module

Win

MPID_Mem_was_alloced — Return true if this memory was allocated with MPID_Mem_alloc

Synopsis

int MPID_Mem_was_alloced( void *ptr )

Input Parameters

ptr Address of memory
size Size of reqion in bytes.

Return value

True if the memory was allocated with MPID_Mem_alloc, false otherwise.

Notes

This routine may be needed by MPI_Win_create to ensure that the memory for passive target RMA
operations was allocated with MPI_Mem_alloc. This may be used, for example, for ensuring that
memory used with passive target operations was allocated with MPID_Mem_alloc.

Module

Win

L Dynamic Processes

(not yet designed)
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M Collective Communication

(not yet designed)

N Connections and Local Process Ids

These routines are used to manage connections. MPI Communicators contain references to these
tables; group operations use the local process id (see MPID_VCR_Get_lpid) to identify processes.

MPID_VCRT_Create — Create a virtual connection reference table

Synopsis

int MPID_VCRT_Create(int size, MPID_VCRT *vcrt_ptr)

MPID_VCRT_Add_ref — Add a reference to a VCRT

Synopsis

int MPID_VCRT_Add_ref(MPID_VCRT vcrt)

MPID_VCRT_Release — Release a reference to a VCRT

Synopsis

int MPID_VCRT_Release(MPID_VCRT vcrt)

MPID_VCRT_Get_ptr —

Synopsis

int MPID_VCRT_Get_ptr(MPID_VCRT vcrt, MPID_VCR **vc_pptr)

MPID_VCR_Dup —
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Synopsis

int MPID_VCR_Dup(MPID_VCR orig_vcr, MPID_VCR * new_vcr)

MPID_VCR_Get_lpid — Get the local process id that corresponds to a virtual connection
reference.

Synopsis

int MPID_VCR_Get_lpid(MPID_VCR vcr, int * lpid_ptr)

Notes

The local process ids are described elsewhere. Basically, they are a nonnegative number by which
this process can refer to other processes to which it is connected. These are local process ids because
different processes may use different ids to identify the same target process

O Timers

Timer support is defined so that the device may either provide or use the timers. We expect most
devices to use one of the timers defined in src/mpi/timer

MPID_Wtime — Return a time stamp

Synopsis

void MPID_Wtime( MPID_Time_t * timeval)

Output Parameter

timeval A pointer to an MPID_Wtime_t variable.

Notes

This routine returns an opaque time value. This difference between two time values returned by
MPID_Wtime can be converted into an elapsed time in seconds with the routine MPID_Wtime_diff.
This routine is defined this way to simplify its implementation as a macro. For example, the for Intel
x86 and gcc,

#define MPID_Wtime(timeval) \
__asm__ __volatile__ ( "cpuid ; rdtsc ; mov %%edx,%1 ; mov %%eax,%0" \

: "=m" (*((char *) (var_ptr))), \
"=m" (*(((char *) (var_ptr))+4)) \

:: "eax", "ebx", "ecx", "edx" ); \



O TIMERS 59

For some purposes, it is important that the timer calls change the timing of the code as little as
possible. This form of a timer routine provides for a very fast timer that has minimal impact on the
rest of the code.
From a semantic standpoint, this format emphasizes that any particular timer value has no meaning;
only the difference between two values is meaningful.

Module

Timer

Question

MPI-2 allows MPI_Wtime to be a macro. We should make that easy; this version does not accomplish
that.

MPID_Wtick — Provide the resolution of the MPID_Wtime timer

Synopsis

double MPID_Wtick( void )

Return value

Resolution of the timer in seconds. In many cases, this is the time between ticks of the clock that
MPID_Wtime returns. In other words, the minimum significant difference that can be computed by
MPID_Wtime_diff.
Note that in some cases, the resolution may be estimated. No application should expect either the
same estimate in different runs or the same value on different processes.

Module

Timer

MPID_Wtime_diff — Compute the difference between two time stamps

Synopsis

void MPID_Wtime_diff( MPID_Time_t *t1, MPID_Time_t *t2, double *diff )

Input Parameters

t1, t2 Two time values set by MPID_Wtime on this process.

Output Parameter

diff The different in time between t2 and t1, measured in seconds.
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Note

If t1 is null, then t2 is assumed to be differences accumulated with MPID_Wtime_acc, and the
output value gives the number of seconds that were accumulated.

Question

Instead of handling a null value of t1, should we have a separate routing MPID_Wtime_todouble that
converts a single timestamp to a double value?

Module

Timer

MPID_Wtime_init — Initialize the timer

Synopsis

void MPID_Wtime_init(void)

Note

This routine should perform any steps needed to initialize the timer. In addition, it should set the
value of the attribute MPI_WTIME_IS_GLOBAL if the timer is known to be the same for all processes
in MPI_COMM_WORLD (the value is zero by default).
If any operations need to be performed when the MPI program calls MPI_Finalize this routine
should register a handler with MPI_Finalize (see the MPICH Design Document).

Module

Timer

MPID_Wtime_todouble — Converts an MPID timestamp to a double

Synopsis

void MPID_Wtime_todouble( MPID_Time_t *timeval, double *seconds )

Input Parameter

timeval MPID_Time_t time stamp

Output Parameter

seconds Time in seconds from an arbitrary (but fixed) time in the past
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Notes

This routine may be used to change a timestamp into a number of seconds, suitable for MPI_Wtime.

MPID_Wtime_acc — Accumulate time values

Synopsis

void MPID_Wtime_acc( MPID_Time_t *t1, MPID_Time_t *t2, MPID_Time_t *t3 )

Input Parameters

t1,t2,t3 Three time values. t3 is updated with the difference between t2 and t1: *t3 +=
(t2 - t1).

Notes

This routine is used to accumulate the time spent with a block of code without first converting the
time stamps into a particular arithmetic type such as a double. For example, if the MPID_Wtime
routine accesses a cycle counter, this routine (or macro) can perform the accumulation using integer
arithmetic.
To convert a time value accumulated with this routine, use MPID_Wtime_diff with a t1 of zero.

Module

Timer
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Advances in Parallel Virtual Machine and Message Passing Interface, volume 1697 of Lecture
Notes in Computer Science, pages 51–58. Springer Verlag, 1999.

[4] Marco Fillo and Richard B. Gillett. Architecture and implementa-
tion of MEMORY CHANNEL2. DIGITAL Technical Journal, 9(1), 1997.
http://www.digital.com/info/DTJP03/DTJP03HM.HTM.

[5] William Gropp, Ewing Lusk, Nathan Doss, and Anthony Skjellum. A high-performance, portable
implementation of the MPI Message-Passing Interface standard. Parallel Computing, 22(6):789–
828, 1996.

[6] Ferhat Hatay, Rolf van deVaart, and Josh Simons. Sun HPC ClusterToolsTM software: Ubiquitous
parallel computing, 2001.



REFERENCES 62

[7] LAM-MPI. World Wide Web. www.lam.org.

[8] Hong Tang, Kai Shen, and Tao Yang. Program transformation and runtime support for threaded
MPI execution on shared memory machines. ACM Transactions on Programming Languages and
Systems, 0(0):999–1025, January 2000.

[9] VI Architecture. Was http://www.viarch.org but has disappeared.

[10] Thorsten von Eicken, Anindya Basu, Vineet Buch, and Werner Vogels and. U-Net: A user-
level network interface for parallel and distributed computing. In Proceedings of the 15th ACM
Symposium on Operating Systems Principles (SOSP), pages 40–53. ACM Press, December 1995.

www.lam.org
http://www.viarch.org


Index

MPID_Abort, 53
access epoch, 10
active target, 1
MPID_Attribute, 31

MPID_Cancel_recv, 41
MPID_Cancel_send, 40
MPID_Comm, 23
MPID_Comm_kind_t, 19
MPID_Comm_thread_lock, 34
MPID_Comm_thread_unlock, 35
connection, 3
context id, 11
MPID_Copy_function, 21

MPID_Datatype, 27
MPID_Delete_function, 21

epoch
access, 10
exposure, 10

MPID_Errhandler, 30
MPID_Errhandler_fn, 19
exposure epoch, 10

MPID_Finalize, 52

MPID_Get_processor_name, 54
MPID_Group, 24

hook routine, 7

MPID_Info, 29
MPID_Init, 50
MPID_Iprobe, 41
MPID_Irecv, 40
MPID_Irsend, 38
MPID_Isend, 37
MPID_Issend, 38

MPID_Keyval, 30

MPID_Lang_t, 18

MPID_MAX_THREAD_LEVEL, 32
MPID_Mem_alloc, 55
MPID_Mem_free, 55
MPID_Mem_was_alloced, 56

MPID_Object_kind, 17
MPIU_Object_add_ref, 32
MPIU_Object_release_ref, 33
MPID_Op, 27

MPID_Op_kind, 19

passive target, 1
polling, 1

points, 5, 14
MPID_Probe, 42
progress, 4
MPID_Progress_end, 48
MPID_Progress_poke, 50
MPID_Progress_start, 48
MPID_Progress_test, 49
MPID_Progress_wait, 49

MPID_Recv, 39
MPID_Recv_init, 45
MPID_Request, 22
MPID_Request_create, 45
MPID_Request_kind, 18
MPID_Request_release, 40
MPID_Rsend, 37
MPID_Rsend_init, 44

segment, 6
MPID_Segment, 6
MPID_Send, 36
MPID_Send_init, 43
MPID_Ssend, 36
MPID_Ssend_init, 44
MPID_Startall, 45

MPID_tBsend, 38
thread safety

issues, 7, 8
MPID_Topo_cluster_info, 46

MPID_User_function, 20

MPID_VCR_Dup, 57
MPID_VCR_Get_lpid, 58
MPID_VCRT_Add_ref, 57
MPID_VCRT_Create, 57
MPID_VCRT_Get_ptr, 57
MPID_VCRT_Release, 57
virtual connections, 2

MPID_Win, 25
MPID_Wtick, 59
MPID_Wtime, 58
MPID_Wtime_acc, 61
MPID_Wtime_diff, 59
MPID_Wtime_init, 60
MPID_Wtime_todouble, 60

63


	Introduction
	Other Work
	MPI Overview
	A Layered Approach

	High-level Overview
	Basic Design Rationale
	Communication Types
	Additional Goals
	Other Relevant MPI Issues
	Structures Involved in Communication
	Communication Contexts and Groups

	Completing Point-to-Point Operations
	Supporting Collective Operations
	Data Segments
	Remote Memory Access
	RMA Aggregation
	Nonblocking RMA and Remote Completion

	Contexts for Collective, File, and Window Operations
	Context Id Generation

	Dynamic Processes

	ADI Layers
	Socket (TCP) communication
	Remote Put
	Shared Memory

	Summary
	Point to point communication
	Completion of Point to point communication
	Starting and Stopping
	RMA
	Dynamic Processes
	Device Hooks

	Integrating a New Device into the MPICH Build Tree
	Steps Needed in Implementing a Device
	Directory Structure
	Device Configuration and Setup

	Data Structures
	Basic enumerations and types
	Major MPI Objects
	Threads

	Basic Point-to-Point
	Persistent Point-to-Point
	Generalized Requests
	Data Segment
	Communication Buffer management
	Process Topology
	Progress Engine
	Starting and stopping
	Information about the device
	RMA
	Memory Allocation for RMA

	Dynamic Processes
	Collective Communication
	Connections and Local Process Ids
	Timers
	References
	Index

